Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,9 @@ from fastapi import FastAPI, File, UploadFile
|
|
2 |
from fastapi.responses import HTMLResponse
|
3 |
from transformers import pipeline
|
4 |
from PIL import Image, ImageDraw
|
5 |
-
import numpy as np
|
6 |
import io
|
7 |
-
import uvicorn
|
8 |
import base64
|
|
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
@@ -20,6 +19,7 @@ def load_models():
|
|
20 |
|
21 |
models = load_models()
|
22 |
|
|
|
23 |
def translate_label(label):
|
24 |
translations = {
|
25 |
"fracture": "Knochenbruch",
|
@@ -31,60 +31,20 @@ def translate_label(label):
|
|
31 |
}
|
32 |
return translations.get(label.lower(), label)
|
33 |
|
|
|
34 |
def create_heatmap_overlay(image, box, score):
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
x1, y1 = box['xmin'], box['ymin']
|
39 |
-
x2, y2 = box['xmax'], box['ymax']
|
40 |
-
|
41 |
-
if score > 0.8:
|
42 |
-
fill_color = (255, 0, 0, 100)
|
43 |
-
border_color = (255, 0, 0, 255)
|
44 |
-
elif score > 0.6:
|
45 |
-
fill_color = (255, 165, 0, 100)
|
46 |
-
border_color = (255, 165, 0, 255)
|
47 |
-
else:
|
48 |
-
fill_color = (255, 255, 0, 100)
|
49 |
-
border_color = (255, 255, 0, 255)
|
50 |
-
|
51 |
-
draw.rectangle([x1, y1, x2, y2], fill=fill_color)
|
52 |
-
draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
|
53 |
-
|
54 |
-
return overlay
|
55 |
|
56 |
def draw_boxes(image, predictions):
|
57 |
-
|
58 |
-
|
59 |
-
for pred in predictions:
|
60 |
-
box = pred['box']
|
61 |
-
score = pred['score']
|
62 |
-
|
63 |
-
overlay = create_heatmap_overlay(image, box, score)
|
64 |
-
result_image = Image.alpha_composite(result_image, overlay)
|
65 |
-
|
66 |
-
draw = ImageDraw.Draw(result_image)
|
67 |
-
temp = 36.5 + (score * 2.5)
|
68 |
-
label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
|
69 |
-
|
70 |
-
text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
|
71 |
-
draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
|
72 |
-
|
73 |
-
draw.text(
|
74 |
-
(box['xmin'], box['ymin']-20),
|
75 |
-
label,
|
76 |
-
fill=(255, 255, 255, 255)
|
77 |
-
)
|
78 |
-
|
79 |
-
return result_image
|
80 |
|
81 |
def image_to_base64(image):
|
82 |
-
|
83 |
-
|
84 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
85 |
-
return f"data:image/png;base64,{img_str}"
|
86 |
|
87 |
-
# Page d'accueil
|
88 |
@app.get("/", response_class=HTMLResponse)
|
89 |
async def main():
|
90 |
content = """
|
@@ -93,230 +53,218 @@ async def main():
|
|
93 |
<head>
|
94 |
<title>Fraktur Detektion</title>
|
95 |
<style>
|
|
|
|
|
96 |
body {
|
97 |
-
font-family: -apple-system,
|
98 |
-
background: #f0f2f5;
|
99 |
margin: 0;
|
100 |
-
padding:
|
101 |
-
|
|
|
102 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
.container {
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
padding: 20px;
|
108 |
-
border-radius: 10px;
|
109 |
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
110 |
}
|
|
|
111 |
.upload-section {
|
112 |
-
background: #
|
113 |
-
padding:
|
114 |
-
border-radius:
|
115 |
-
margin:
|
116 |
text-align: center;
|
117 |
}
|
118 |
-
|
119 |
-
background: #f8f9fa;
|
120 |
-
padding: 15px;
|
121 |
-
border-radius: 8px;
|
122 |
-
margin: 10px 0;
|
123 |
-
border: 1px solid #e9ecef;
|
124 |
-
}
|
125 |
.button {
|
126 |
background: #0066cc;
|
127 |
color: white;
|
128 |
border: none;
|
129 |
-
padding:
|
130 |
-
border-radius:
|
131 |
cursor: pointer;
|
132 |
-
|
133 |
-
font-size: 16px;
|
134 |
-
}
|
135 |
-
.button:hover {
|
136 |
-
background: #0052a3;
|
137 |
-
transform: translateY(-1px);
|
138 |
}
|
139 |
-
|
|
|
140 |
display: grid;
|
141 |
-
|
142 |
-
|
143 |
-
margin-top: 20px;
|
144 |
-
}
|
145 |
-
.confidence-slider {
|
146 |
-
width: 100%;
|
147 |
-
max-width: 300px;
|
148 |
-
margin: 20px auto;
|
149 |
}
|
|
|
150 |
img {
|
151 |
max-width: 100%;
|
152 |
-
|
153 |
-
|
154 |
}
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
}
|
161 |
-
.score-high { color: #0066cc; }
|
162 |
-
.score-medium { color: #ffa500; }
|
163 |
-
.score-low { color: #dc3545; }
|
164 |
</style>
|
165 |
</head>
|
166 |
<body>
|
167 |
<div class="container">
|
168 |
-
<
|
169 |
|
170 |
<div class="upload-section">
|
171 |
<form action="/analyze" method="post" enctype="multipart/form-data">
|
172 |
-
<
|
173 |
-
|
174 |
-
</div>
|
175 |
-
<div class="confidence-slider">
|
176 |
-
<label for="threshold">Konfidenzschwelle: <span id="thresholdValue">0.60</span></label>
|
177 |
-
<input type="range" id="threshold" name="threshold"
|
178 |
-
min="0" max="1" step="0.05" value="0.60"
|
179 |
-
oninput="updateThreshold(this.value)">
|
180 |
-
</div>
|
181 |
<button type="submit" class="button">Analysieren</button>
|
182 |
</form>
|
183 |
</div>
|
184 |
-
|
185 |
-
<div id="loading" class="loading">
|
186 |
-
Bild wird analysiert... ⏳
|
187 |
-
</div>
|
188 |
-
|
189 |
-
<script>
|
190 |
-
function updateThreshold(value) {
|
191 |
-
document.getElementById('thresholdValue').textContent = parseFloat(value).toFixed(2);
|
192 |
-
}
|
193 |
-
|
194 |
-
document.querySelector('form').onsubmit = function() {
|
195 |
-
document.getElementById('loading').style.display = 'block';
|
196 |
-
}
|
197 |
-
</script>
|
198 |
</div>
|
199 |
</body>
|
200 |
</html>
|
201 |
"""
|
202 |
return content
|
203 |
|
|
|
204 |
@app.post("/analyze", response_class=HTMLResponse)
|
205 |
async def analyze_file(file: UploadFile = File(...)):
|
206 |
try:
|
207 |
-
#
|
208 |
contents = await file.read()
|
209 |
image = Image.open(io.BytesIO(contents))
|
210 |
|
211 |
-
# Analyse avec tous les modèles
|
212 |
predictions_watcher = models["KnochenWächter"](image)
|
213 |
predictions_master = models["RöntgenMeister"](image)
|
214 |
predictions_locator = models["KnochenAuge"](image)
|
215 |
|
216 |
-
# Création de l'image annotée
|
217 |
filtered_preds = [p for p in predictions_locator if p['score'] >= 0.6]
|
218 |
-
if filtered_preds
|
219 |
-
result_image = draw_boxes(image, filtered_preds)
|
220 |
-
else:
|
221 |
-
result_image = image
|
222 |
-
|
223 |
-
# Conversion des images en base64
|
224 |
result_image_b64 = image_to_base64(result_image)
|
225 |
|
226 |
-
# Construction du HTML pour les résultats
|
227 |
results_html = """
|
228 |
<!DOCTYPE html>
|
229 |
<html>
|
230 |
<head>
|
231 |
-
<title>
|
232 |
<style>
|
|
|
|
|
233 |
body {
|
234 |
-
font-family: -apple-system,
|
235 |
-
background: #f0f2f5;
|
236 |
margin: 0;
|
237 |
-
padding:
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
}
|
|
|
240 |
.container {
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
padding: 20px;
|
245 |
-
border-radius: 10px;
|
246 |
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
247 |
}
|
|
|
248 |
.results-grid {
|
249 |
display: grid;
|
250 |
-
|
251 |
-
|
252 |
-
margin-top: 20px;
|
253 |
}
|
|
|
254 |
.result-box {
|
255 |
-
background: #
|
256 |
-
padding:
|
257 |
-
border-radius:
|
258 |
-
margin: 10px 0;
|
259 |
-
border: 1px solid #e9ecef;
|
260 |
}
|
261 |
-
|
262 |
-
.score-medium { color: #ffa500; font-weight: bold; }
|
263 |
.back-button {
|
264 |
display: inline-block;
|
265 |
background: #0066cc;
|
266 |
color: white;
|
267 |
-
padding:
|
268 |
-
border-radius:
|
269 |
text-decoration: none;
|
270 |
-
margin-top:
|
271 |
-
transition: all 0.3s ease;
|
272 |
-
}
|
273 |
-
.back-button:hover {
|
274 |
-
background: #0052a3;
|
275 |
-
transform: translateY(-1px);
|
276 |
}
|
|
|
277 |
img {
|
278 |
max-width: 100%;
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
}
|
282 |
</style>
|
283 |
</head>
|
284 |
<body>
|
285 |
<div class="container">
|
286 |
-
<
|
287 |
|
288 |
<div class="results-grid">
|
289 |
-
<div>
|
290 |
-
<h2>🤖 KI-Diagnose</h2>
|
291 |
"""
|
292 |
|
293 |
# KnochenWächter results
|
294 |
-
results_html += "<h3
|
295 |
for pred in predictions_watcher:
|
296 |
-
|
297 |
-
|
298 |
-
<div class="result-box">
|
299 |
-
<span class="{confidence_class}">{pred['score']:.1%}</span> -
|
300 |
-
{translate_label(pred['label'])}
|
301 |
-
</div>
|
302 |
-
"""
|
303 |
|
304 |
# RöntgenMeister results
|
305 |
-
results_html += "<h3
|
306 |
for pred in predictions_master:
|
307 |
-
|
308 |
-
|
309 |
-
<div class="result-box">
|
310 |
-
<span class="{confidence_class}">{pred['score']:.1%}</span> -
|
311 |
-
{translate_label(pred['label'])}
|
312 |
-
</div>
|
313 |
-
"""
|
314 |
|
315 |
-
#
|
316 |
results_html += f"""
|
317 |
-
|
318 |
-
|
319 |
-
<h2>🎯 Fraktur Lokalisation</h2>
|
320 |
<img src="{result_image_b64}" alt="Analyzed image">
|
321 |
</div>
|
322 |
</div>
|
@@ -331,12 +279,24 @@ async def analyze_file(file: UploadFile = File(...)):
|
|
331 |
|
332 |
except Exception as e:
|
333 |
return f"""
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
<a href="/" class="back-button">← Zurück</a>
|
339 |
</body>
|
|
|
340 |
"""
|
341 |
|
342 |
if __name__ == "__main__":
|
|
|
2 |
from fastapi.responses import HTMLResponse
|
3 |
from transformers import pipeline
|
4 |
from PIL import Image, ImageDraw
|
|
|
5 |
import io
|
|
|
6 |
import base64
|
7 |
+
import uvicorn
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
19 |
|
20 |
models = load_models()
|
21 |
|
22 |
+
# Fonctions d'analyse existantes restent identiques
|
23 |
def translate_label(label):
|
24 |
translations = {
|
25 |
"fracture": "Knochenbruch",
|
|
|
31 |
}
|
32 |
return translations.get(label.lower(), label)
|
33 |
|
34 |
+
# Autres fonctions helper restent identiques
|
35 |
def create_heatmap_overlay(image, box, score):
|
36 |
+
# Votre code existant reste le même
|
37 |
+
[...]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
def draw_boxes(image, predictions):
|
40 |
+
# Votre code existant reste le même
|
41 |
+
[...]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def image_to_base64(image):
|
44 |
+
# Votre code existant reste le même
|
45 |
+
[...]
|
|
|
|
|
46 |
|
47 |
+
# Page d'accueil simplifiée
|
48 |
@app.get("/", response_class=HTMLResponse)
|
49 |
async def main():
|
50 |
content = """
|
|
|
53 |
<head>
|
54 |
<title>Fraktur Detektion</title>
|
55 |
<style>
|
56 |
+
:root { color-scheme: light dark; }
|
57 |
+
|
58 |
body {
|
59 |
+
font-family: system-ui, -apple-system, sans-serif;
|
|
|
60 |
margin: 0;
|
61 |
+
padding: 1rem;
|
62 |
+
max-width: 100%;
|
63 |
+
overflow-x: hidden;
|
64 |
}
|
65 |
+
|
66 |
+
@media (prefers-color-scheme: dark) {
|
67 |
+
body {
|
68 |
+
background: #1a1a1a;
|
69 |
+
color: #fff;
|
70 |
+
}
|
71 |
+
.container { background: #2d2d2d; }
|
72 |
+
.upload-section { background: #3d3d3d; }
|
73 |
+
}
|
74 |
+
|
75 |
.container {
|
76 |
+
background: #ffffff;
|
77 |
+
padding: 1.5rem;
|
78 |
+
border-radius: 0.5rem;
|
|
|
|
|
79 |
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
80 |
}
|
81 |
+
|
82 |
.upload-section {
|
83 |
+
background: #f5f5f5;
|
84 |
+
padding: 1.5rem;
|
85 |
+
border-radius: 0.5rem;
|
86 |
+
margin: 1rem 0;
|
87 |
text-align: center;
|
88 |
}
|
89 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
.button {
|
91 |
background: #0066cc;
|
92 |
color: white;
|
93 |
border: none;
|
94 |
+
padding: 0.5rem 1rem;
|
95 |
+
border-radius: 0.25rem;
|
96 |
cursor: pointer;
|
97 |
+
margin-top: 1rem;
|
|
|
|
|
|
|
|
|
|
|
98 |
}
|
99 |
+
|
100 |
+
.results-container {
|
101 |
display: grid;
|
102 |
+
gap: 1rem;
|
103 |
+
margin-top: 1rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
}
|
105 |
+
|
106 |
img {
|
107 |
max-width: 100%;
|
108 |
+
height: auto;
|
109 |
+
border-radius: 0.5rem;
|
110 |
}
|
111 |
+
|
112 |
+
::-webkit-scrollbar {
|
113 |
+
width: 8px;
|
114 |
+
height: 8px;
|
115 |
+
}
|
116 |
+
|
117 |
+
::-webkit-scrollbar-track {
|
118 |
+
background: transparent;
|
119 |
+
}
|
120 |
+
|
121 |
+
::-webkit-scrollbar-thumb {
|
122 |
+
background-color: rgba(0, 0, 0, 0.2);
|
123 |
+
border-radius: 4px;
|
124 |
+
}
|
125 |
+
|
126 |
+
@media (prefers-color-scheme: dark) {
|
127 |
+
::-webkit-scrollbar-thumb {
|
128 |
+
background-color: rgba(255, 255, 255, 0.2);
|
129 |
+
}
|
130 |
}
|
|
|
|
|
|
|
131 |
</style>
|
132 |
</head>
|
133 |
<body>
|
134 |
<div class="container">
|
135 |
+
<h2>Fraktur Detektion</h2>
|
136 |
|
137 |
<div class="upload-section">
|
138 |
<form action="/analyze" method="post" enctype="multipart/form-data">
|
139 |
+
<input type="file" name="file" accept="image/*" required>
|
140 |
+
<br>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
<button type="submit" class="button">Analysieren</button>
|
142 |
</form>
|
143 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
</div>
|
145 |
</body>
|
146 |
</html>
|
147 |
"""
|
148 |
return content
|
149 |
|
150 |
+
# Page de résultats simplifiée
|
151 |
@app.post("/analyze", response_class=HTMLResponse)
|
152 |
async def analyze_file(file: UploadFile = File(...)):
|
153 |
try:
|
154 |
+
# Votre logique d'analyse existante
|
155 |
contents = await file.read()
|
156 |
image = Image.open(io.BytesIO(contents))
|
157 |
|
|
|
158 |
predictions_watcher = models["KnochenWächter"](image)
|
159 |
predictions_master = models["RöntgenMeister"](image)
|
160 |
predictions_locator = models["KnochenAuge"](image)
|
161 |
|
|
|
162 |
filtered_preds = [p for p in predictions_locator if p['score'] >= 0.6]
|
163 |
+
result_image = draw_boxes(image, filtered_preds) if filtered_preds else image
|
|
|
|
|
|
|
|
|
|
|
164 |
result_image_b64 = image_to_base64(result_image)
|
165 |
|
|
|
166 |
results_html = """
|
167 |
<!DOCTYPE html>
|
168 |
<html>
|
169 |
<head>
|
170 |
+
<title>Ergebnisse</title>
|
171 |
<style>
|
172 |
+
:root { color-scheme: light dark; }
|
173 |
+
|
174 |
body {
|
175 |
+
font-family: system-ui, -apple-system, sans-serif;
|
|
|
176 |
margin: 0;
|
177 |
+
padding: 1rem;
|
178 |
+
}
|
179 |
+
|
180 |
+
@media (prefers-color-scheme: dark) {
|
181 |
+
body {
|
182 |
+
background: #1a1a1a;
|
183 |
+
color: #fff;
|
184 |
+
}
|
185 |
+
.container { background: #2d2d2d; }
|
186 |
+
.result-box { background: #3d3d3d; }
|
187 |
}
|
188 |
+
|
189 |
.container {
|
190 |
+
background: #ffffff;
|
191 |
+
padding: 1.5rem;
|
192 |
+
border-radius: 0.5rem;
|
|
|
|
|
193 |
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
194 |
}
|
195 |
+
|
196 |
.results-grid {
|
197 |
display: grid;
|
198 |
+
gap: 1rem;
|
199 |
+
margin-top: 1rem;
|
|
|
200 |
}
|
201 |
+
|
202 |
.result-box {
|
203 |
+
background: #f5f5f5;
|
204 |
+
padding: 1rem;
|
205 |
+
border-radius: 0.5rem;
|
|
|
|
|
206 |
}
|
207 |
+
|
|
|
208 |
.back-button {
|
209 |
display: inline-block;
|
210 |
background: #0066cc;
|
211 |
color: white;
|
212 |
+
padding: 0.5rem 1rem;
|
213 |
+
border-radius: 0.25rem;
|
214 |
text-decoration: none;
|
215 |
+
margin-top: 1rem;
|
|
|
|
|
|
|
|
|
|
|
216 |
}
|
217 |
+
|
218 |
img {
|
219 |
max-width: 100%;
|
220 |
+
height: auto;
|
221 |
+
border-radius: 0.5rem;
|
222 |
+
}
|
223 |
+
|
224 |
+
::-webkit-scrollbar {
|
225 |
+
width: 8px;
|
226 |
+
height: 8px;
|
227 |
+
}
|
228 |
+
|
229 |
+
::-webkit-scrollbar-track {
|
230 |
+
background: transparent;
|
231 |
+
}
|
232 |
+
|
233 |
+
::-webkit-scrollbar-thumb {
|
234 |
+
background-color: rgba(0, 0, 0, 0.2);
|
235 |
+
border-radius: 4px;
|
236 |
+
}
|
237 |
+
|
238 |
+
@media (prefers-color-scheme: dark) {
|
239 |
+
::-webkit-scrollbar-thumb {
|
240 |
+
background-color: rgba(255, 255, 255, 0.2);
|
241 |
+
}
|
242 |
}
|
243 |
</style>
|
244 |
</head>
|
245 |
<body>
|
246 |
<div class="container">
|
247 |
+
<h2>Analyse Ergebnisse</h2>
|
248 |
|
249 |
<div class="results-grid">
|
|
|
|
|
250 |
"""
|
251 |
|
252 |
# KnochenWächter results
|
253 |
+
results_html += "<div class='result-box'><h3>KnochenWächter</h3>"
|
254 |
for pred in predictions_watcher:
|
255 |
+
results_html += f"<p>{pred['score']:.1%} - {translate_label(pred['label'])}</p>"
|
256 |
+
results_html += "</div>"
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
# RöntgenMeister results
|
259 |
+
results_html += "<div class='result-box'><h3>RöntgenMeister</h3>"
|
260 |
for pred in predictions_master:
|
261 |
+
results_html += f"<p>{pred['score']:.1%} - {translate_label(pred['label'])}</p>"
|
262 |
+
results_html += "</div>"
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
+
# Image result
|
265 |
results_html += f"""
|
266 |
+
<div class='result-box'>
|
267 |
+
<h3>Fraktur Lokalisation</h3>
|
|
|
268 |
<img src="{result_image_b64}" alt="Analyzed image">
|
269 |
</div>
|
270 |
</div>
|
|
|
279 |
|
280 |
except Exception as e:
|
281 |
return f"""
|
282 |
+
<!DOCTYPE html>
|
283 |
+
<html>
|
284 |
+
<head>
|
285 |
+
<title>Fehler</title>
|
286 |
+
<style>
|
287 |
+
:root { color-scheme: light dark; }
|
288 |
+
body {{
|
289 |
+
font-family: system-ui, -apple-system, sans-serif;
|
290 |
+
margin: 1rem;
|
291 |
+
}}
|
292 |
+
</style>
|
293 |
+
</head>
|
294 |
+
<body>
|
295 |
+
<h2>Fehler</h2>
|
296 |
+
<p>{str(e)}</p>
|
297 |
<a href="/" class="back-button">← Zurück</a>
|
298 |
</body>
|
299 |
+
</html>
|
300 |
"""
|
301 |
|
302 |
if __name__ == "__main__":
|