Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import torch
|
5 |
+
|
6 |
+
def load_models():
|
7 |
+
return {
|
8 |
+
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
|
9 |
+
"KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
|
10 |
+
"RöntgenMeister": pipeline("image-classification",
|
11 |
+
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
12 |
+
}
|
13 |
+
|
14 |
+
def draw_boxes(image, predictions, conf_threshold=0.6):
|
15 |
+
draw = ImageDraw.Draw(image)
|
16 |
+
fractures_found = False
|
17 |
+
|
18 |
+
for pred in predictions:
|
19 |
+
if pred['label'].lower() == 'fracture' and pred['score'] >= conf_threshold:
|
20 |
+
fractures_found = True
|
21 |
+
box = pred['box']
|
22 |
+
label = f"Fraktur ({pred['score']:.1%})"
|
23 |
+
color = "#2563eb" if pred['score'] > 0.7 else "#eab308"
|
24 |
+
|
25 |
+
draw.rectangle(
|
26 |
+
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
27 |
+
outline=color,
|
28 |
+
width=2
|
29 |
+
)
|
30 |
+
|
31 |
+
text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
|
32 |
+
draw.rectangle(text_bbox, fill=color)
|
33 |
+
draw.text((box['xmin'], box['ymin']-15), label, fill="white")
|
34 |
+
|
35 |
+
return image if fractures_found else None
|
36 |
+
|
37 |
+
def analyze_images(images, conf_threshold=0.6):
|
38 |
+
models = load_models()
|
39 |
+
results = []
|
40 |
+
|
41 |
+
for img in images:
|
42 |
+
pil_img = Image.fromarray(img)
|
43 |
+
|
44 |
+
# KnochenAuge Analysis
|
45 |
+
predictions = models["KnochenAuge"](pil_img)
|
46 |
+
fractures_found = any(p['label'].lower() == 'fracture' and p['score'] >= conf_threshold
|
47 |
+
for p in predictions)
|
48 |
+
|
49 |
+
if fractures_found:
|
50 |
+
# Draw boxes on image
|
51 |
+
result_image = draw_boxes(pil_img.copy(), predictions, conf_threshold)
|
52 |
+
|
53 |
+
# Additional analyses
|
54 |
+
wachter_pred = models["KnochenWächter"](pil_img)[0]
|
55 |
+
meister_pred = models["RöntgenMeister"](pil_img)[0]
|
56 |
+
|
57 |
+
if result_image:
|
58 |
+
results.append({
|
59 |
+
"image": result_image,
|
60 |
+
"knochen_wachter": f"KnochenWächter: {wachter_pred['score']:.1%}",
|
61 |
+
"rontgen_meister": f"RöntgenMeister: {meister_pred['score']:.1%}"
|
62 |
+
})
|
63 |
+
|
64 |
+
# Format results for display
|
65 |
+
if not results:
|
66 |
+
return None, "Keine Frakturen gefunden."
|
67 |
+
|
68 |
+
output_images = [r["image"] for r in results]
|
69 |
+
analysis_text = "\n\n".join([
|
70 |
+
f"Bild {i+1}:\n{r['knochen_wachter']}\n{r['rontgen_meister']}"
|
71 |
+
for i, r in enumerate(results)
|
72 |
+
])
|
73 |
+
|
74 |
+
return output_images, analysis_text
|
75 |
+
|
76 |
+
# Interface configuration
|
77 |
+
css = """
|
78 |
+
.gradio-container {
|
79 |
+
background-color: transparent !important;
|
80 |
+
}
|
81 |
+
.dark {
|
82 |
+
background-color: #1f2937;
|
83 |
+
color: #f3f4f6;
|
84 |
+
}
|
85 |
+
.light {
|
86 |
+
background-color: #ffffff;
|
87 |
+
color: #1f2937;
|
88 |
+
}
|
89 |
+
"""
|
90 |
+
|
91 |
+
with gr.Blocks(css=css) as demo:
|
92 |
+
with gr.Row():
|
93 |
+
with gr.Column(scale=1):
|
94 |
+
file_upload = gr.File(
|
95 |
+
label="Röntgenbilder hochladen",
|
96 |
+
file_types=["image"],
|
97 |
+
file_count="multiple"
|
98 |
+
)
|
99 |
+
conf_slider = gr.Slider(
|
100 |
+
minimum=0.0,
|
101 |
+
maximum=1.0,
|
102 |
+
value=0.6,
|
103 |
+
step=0.05,
|
104 |
+
label="Konfidenzschwelle"
|
105 |
+
)
|
106 |
+
analyze_btn = gr.Button("Bilder analysieren", variant="primary")
|
107 |
+
|
108 |
+
with gr.Column(scale=2):
|
109 |
+
gallery = gr.Gallery(label="Ergebnisse").style(grid=2)
|
110 |
+
analysis_output = gr.Textbox(label="KI-Analyse", lines=4)
|
111 |
+
|
112 |
+
analyze_btn.click(
|
113 |
+
fn=analyze_images,
|
114 |
+
inputs=[file_upload, conf_slider],
|
115 |
+
outputs=[gallery, analysis_output]
|
116 |
+
)
|
117 |
+
|
118 |
+
# Launch configuration
|
119 |
+
demo.launch(
|
120 |
+
show_api=False,
|
121 |
+
share=False,
|
122 |
+
server_name="0.0.0.0",
|
123 |
+
server_port=7860,
|
124 |
+
show_error=True,
|
125 |
+
enable_queue=True
|
126 |
+
)
|