Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,341 @@
|
|
1 |
from fastapi import FastAPI, File, UploadFile
|
2 |
from fastapi.responses import HTMLResponse
|
3 |
from transformers import pipeline
|
4 |
-
from PIL import Image
|
|
|
5 |
import io
|
6 |
import uvicorn
|
|
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
# Chargement des modèles
|
11 |
def load_models():
|
12 |
return {
|
13 |
-
"
|
|
|
|
|
|
|
14 |
}
|
15 |
|
16 |
models = load_models()
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
@app.get("/", response_class=HTMLResponse)
|
20 |
async def main():
|
21 |
content = """
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
</body>
|
|
|
29 |
"""
|
30 |
return content
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
async def upload_file(file: UploadFile = File(...)):
|
35 |
try:
|
36 |
# Lecture de l'image
|
37 |
contents = await file.read()
|
38 |
image = Image.open(io.BytesIO(contents))
|
39 |
|
40 |
-
# Analyse
|
41 |
-
|
|
|
|
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
</body>
|
|
|
58 |
"""
|
|
|
|
|
|
|
59 |
except Exception as e:
|
60 |
return f"""
|
61 |
<body style="font-family: Arial; max-width: 800px; margin: 0 auto; padding: 20px;">
|
62 |
<h1>Fehler</h1>
|
63 |
<p>Ein Fehler ist aufgetreten: {str(e)}</p>
|
64 |
<br>
|
65 |
-
<a href="/"
|
66 |
</body>
|
67 |
"""
|
68 |
|
|
|
1 |
from fastapi import FastAPI, File, UploadFile
|
2 |
from fastapi.responses import HTMLResponse
|
3 |
from transformers import pipeline
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
import numpy as np
|
6 |
import io
|
7 |
import uvicorn
|
8 |
+
import base64
|
9 |
|
10 |
app = FastAPI()
|
11 |
|
12 |
# Chargement des modèles
|
13 |
def load_models():
|
14 |
return {
|
15 |
+
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
|
16 |
+
"KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
|
17 |
+
"RöntgenMeister": pipeline("image-classification",
|
18 |
+
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
19 |
}
|
20 |
|
21 |
models = load_models()
|
22 |
|
23 |
+
def translate_label(label):
|
24 |
+
translations = {
|
25 |
+
"fracture": "Knochenbruch",
|
26 |
+
"no fracture": "Kein Knochenbruch",
|
27 |
+
"normal": "Normal",
|
28 |
+
"abnormal": "Auffällig",
|
29 |
+
"F1": "Knochenbruch",
|
30 |
+
"NF": "Kein Knochenbruch"
|
31 |
+
}
|
32 |
+
return translations.get(label.lower(), label)
|
33 |
+
|
34 |
+
def create_heatmap_overlay(image, box, score):
|
35 |
+
overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
|
36 |
+
draw = ImageDraw.Draw(overlay)
|
37 |
+
|
38 |
+
x1, y1 = box['xmin'], box['ymin']
|
39 |
+
x2, y2 = box['xmax'], box['ymax']
|
40 |
+
|
41 |
+
if score > 0.8:
|
42 |
+
fill_color = (255, 0, 0, 100)
|
43 |
+
border_color = (255, 0, 0, 255)
|
44 |
+
elif score > 0.6:
|
45 |
+
fill_color = (255, 165, 0, 100)
|
46 |
+
border_color = (255, 165, 0, 255)
|
47 |
+
else:
|
48 |
+
fill_color = (255, 255, 0, 100)
|
49 |
+
border_color = (255, 255, 0, 255)
|
50 |
+
|
51 |
+
draw.rectangle([x1, y1, x2, y2], fill=fill_color)
|
52 |
+
draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
|
53 |
+
|
54 |
+
return overlay
|
55 |
+
|
56 |
+
def draw_boxes(image, predictions):
|
57 |
+
result_image = image.copy().convert('RGBA')
|
58 |
+
|
59 |
+
for pred in predictions:
|
60 |
+
box = pred['box']
|
61 |
+
score = pred['score']
|
62 |
+
|
63 |
+
overlay = create_heatmap_overlay(image, box, score)
|
64 |
+
result_image = Image.alpha_composite(result_image, overlay)
|
65 |
+
|
66 |
+
draw = ImageDraw.Draw(result_image)
|
67 |
+
temp = 36.5 + (score * 2.5)
|
68 |
+
label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
|
69 |
+
|
70 |
+
text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
|
71 |
+
draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
|
72 |
+
|
73 |
+
draw.text(
|
74 |
+
(box['xmin'], box['ymin']-20),
|
75 |
+
label,
|
76 |
+
fill=(255, 255, 255, 255)
|
77 |
+
)
|
78 |
+
|
79 |
+
return result_image
|
80 |
+
|
81 |
+
def image_to_base64(image):
|
82 |
+
buffered = io.BytesIO()
|
83 |
+
image.save(buffered, format="PNG")
|
84 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
85 |
+
return f"data:image/png;base64,{img_str}"
|
86 |
+
|
87 |
+
# Page d'accueil avec interface améliorée
|
88 |
@app.get("/", response_class=HTMLResponse)
|
89 |
async def main():
|
90 |
content = """
|
91 |
+
<!DOCTYPE html>
|
92 |
+
<html>
|
93 |
+
<head>
|
94 |
+
<title>Fraktur Detektion</title>
|
95 |
+
<style>
|
96 |
+
body {
|
97 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
|
98 |
+
background: #f0f2f5;
|
99 |
+
margin: 0;
|
100 |
+
padding: 20px;
|
101 |
+
color: #1a1a1a;
|
102 |
+
}
|
103 |
+
.container {
|
104 |
+
max-width: 1200px;
|
105 |
+
margin: 0 auto;
|
106 |
+
background: white;
|
107 |
+
padding: 20px;
|
108 |
+
border-radius: 10px;
|
109 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
110 |
+
}
|
111 |
+
.upload-section {
|
112 |
+
background: #f8f9fa;
|
113 |
+
padding: 20px;
|
114 |
+
border-radius: 8px;
|
115 |
+
margin: 20px 0;
|
116 |
+
text-align: center;
|
117 |
+
}
|
118 |
+
.result-box {
|
119 |
+
background: #f8f9fa;
|
120 |
+
padding: 15px;
|
121 |
+
border-radius: 8px;
|
122 |
+
margin: 10px 0;
|
123 |
+
border: 1px solid #e9ecef;
|
124 |
+
}
|
125 |
+
.button {
|
126 |
+
background: #0066cc;
|
127 |
+
color: white;
|
128 |
+
border: none;
|
129 |
+
padding: 10px 20px;
|
130 |
+
border-radius: 5px;
|
131 |
+
cursor: pointer;
|
132 |
+
transition: all 0.3s ease;
|
133 |
+
font-size: 16px;
|
134 |
+
}
|
135 |
+
.button:hover {
|
136 |
+
background: #0052a3;
|
137 |
+
transform: translateY(-1px);
|
138 |
+
}
|
139 |
+
.results-grid {
|
140 |
+
display: grid;
|
141 |
+
grid-template-columns: 1fr 1fr;
|
142 |
+
gap: 20px;
|
143 |
+
margin-top: 20px;
|
144 |
+
}
|
145 |
+
.confidence-slider {
|
146 |
+
width: 100%;
|
147 |
+
max-width: 300px;
|
148 |
+
margin: 20px auto;
|
149 |
+
}
|
150 |
+
img {
|
151 |
+
max-width: 100%;
|
152 |
+
border-radius: 8px;
|
153 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
154 |
+
}
|
155 |
+
.loading {
|
156 |
+
display: none;
|
157 |
+
text-align: center;
|
158 |
+
padding: 20px;
|
159 |
+
font-weight: bold;
|
160 |
+
}
|
161 |
+
.score-high { color: #0066cc; }
|
162 |
+
.score-medium { color: #ffa500; }
|
163 |
+
.score-low { color: #dc3545; }
|
164 |
+
</style>
|
165 |
+
</head>
|
166 |
+
<body>
|
167 |
+
<div class="container">
|
168 |
+
<h1>📤 Fraktur Detektion</h1>
|
169 |
+
|
170 |
+
<div class="upload-section">
|
171 |
+
<form action="/analyze" method="post" enctype="multipart/form-data">
|
172 |
+
<div>
|
173 |
+
<input type="file" name="file" accept="image/*" required>
|
174 |
+
</div>
|
175 |
+
<div class="confidence-slider">
|
176 |
+
<label for="threshold">Konfidenzschwelle: <span id="thresholdValue">0.60</span></label>
|
177 |
+
<input type="range" id="threshold" name="threshold"
|
178 |
+
min="0" max="1" step="0.05" value="0.60"
|
179 |
+
oninput="updateThreshold(this.value)">
|
180 |
+
</div>
|
181 |
+
<button type="submit" class="button">Analysieren</button>
|
182 |
+
</form>
|
183 |
+
</div>
|
184 |
+
|
185 |
+
<div id="loading" class="loading">
|
186 |
+
Bild wird analysiert... ⏳
|
187 |
+
</div>
|
188 |
+
|
189 |
+
<script>
|
190 |
+
function updateThreshold(value) {
|
191 |
+
document.getElementById('thresholdValue').textContent = parseFloat(value).toFixed(2);
|
192 |
+
}
|
193 |
+
|
194 |
+
document.querySelector('form').onsubmit = function() {
|
195 |
+
document.getElementById('loading').style.display = 'block';
|
196 |
+
}
|
197 |
+
</script>
|
198 |
+
</div>
|
199 |
</body>
|
200 |
+
</html>
|
201 |
"""
|
202 |
return content
|
203 |
|
204 |
+
@app.post("/analyze", response_class=HTMLResponse)
|
205 |
+
async def analyze_file(file: UploadFile = File(...)):
|
|
|
206 |
try:
|
207 |
# Lecture de l'image
|
208 |
contents = await file.read()
|
209 |
image = Image.open(io.BytesIO(contents))
|
210 |
|
211 |
+
# Analyse avec tous les modèles
|
212 |
+
predictions_watcher = models["KnochenWächter"](image)
|
213 |
+
predictions_master = models["RöntgenMeister"](image)
|
214 |
+
predictions_locator = models["KnochenAuge"](image)
|
215 |
|
216 |
+
# Création de l'image annotée
|
217 |
+
filtered_preds = [p for p in predictions_locator if p['score'] >= 0.6]
|
218 |
+
if filtered_preds:
|
219 |
+
result_image = draw_boxes(image, filtered_preds)
|
220 |
+
else:
|
221 |
+
result_image = image
|
222 |
+
|
223 |
+
# Conversion des images en base64
|
224 |
+
result_image_b64 = image_to_base64(result_image)
|
225 |
|
226 |
+
# Construction du HTML pour les résultats
|
227 |
+
results_html = """
|
228 |
+
<!DOCTYPE html>
|
229 |
+
<html>
|
230 |
+
<head>
|
231 |
+
<title>Analyse Ergebnisse</title>
|
232 |
+
<style>
|
233 |
+
body {
|
234 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
|
235 |
+
background: #f0f2f5;
|
236 |
+
margin: 0;
|
237 |
+
padding: 20px;
|
238 |
+
color: #1a1a1a;
|
239 |
+
}
|
240 |
+
.container {
|
241 |
+
max-width: 1200px;
|
242 |
+
margin: 0 auto;
|
243 |
+
background: white;
|
244 |
+
padding: 20px;
|
245 |
+
border-radius: 10px;
|
246 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
247 |
+
}
|
248 |
+
.results-grid {
|
249 |
+
display: grid;
|
250 |
+
grid-template-columns: 1fr 1fr;
|
251 |
+
gap: 20px;
|
252 |
+
margin-top: 20px;
|
253 |
+
}
|
254 |
+
.result-box {
|
255 |
+
background: #f8f9fa;
|
256 |
+
padding: 15px;
|
257 |
+
border-radius: 8px;
|
258 |
+
margin: 10px 0;
|
259 |
+
border: 1px solid #e9ecef;
|
260 |
+
}
|
261 |
+
.score-high { color: #0066cc; font-weight: bold; }
|
262 |
+
.score-medium { color: #ffa500; font-weight: bold; }
|
263 |
+
.back-button {
|
264 |
+
display: inline-block;
|
265 |
+
background: #0066cc;
|
266 |
+
color: white;
|
267 |
+
padding: 10px 20px;
|
268 |
+
border-radius: 5px;
|
269 |
+
text-decoration: none;
|
270 |
+
margin-top: 20px;
|
271 |
+
transition: all 0.3s ease;
|
272 |
+
}
|
273 |
+
.back-button:hover {
|
274 |
+
background: #0052a3;
|
275 |
+
transform: translateY(-1px);
|
276 |
+
}
|
277 |
+
img {
|
278 |
+
max-width: 100%;
|
279 |
+
border-radius: 8px;
|
280 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
281 |
+
}
|
282 |
+
</style>
|
283 |
+
</head>
|
284 |
+
<body>
|
285 |
+
<div class="container">
|
286 |
+
<h1>🔍 Analyse Ergebnisse</h1>
|
287 |
+
|
288 |
+
<div class="results-grid">
|
289 |
+
<div>
|
290 |
+
<h2>🤖 KI-Diagnose</h2>
|
291 |
+
"""
|
292 |
+
|
293 |
+
# KnochenWächter results
|
294 |
+
results_html += "<h3>🛡️ KnochenWächter</h3>"
|
295 |
+
for pred in predictions_watcher:
|
296 |
+
confidence_class = "score-high" if pred['score'] > 0.7 else "score-medium"
|
297 |
+
results_html += f"""
|
298 |
+
<div class="result-box">
|
299 |
+
<span class="{confidence_class}">{pred['score']:.1%}</span> -
|
300 |
+
{translate_label(pred['label'])}
|
301 |
+
</div>
|
302 |
+
"""
|
303 |
+
|
304 |
+
# RöntgenMeister results
|
305 |
+
results_html += "<h3>🎓 RöntgenMeister</h3>"
|
306 |
+
for pred in predictions_master:
|
307 |
+
confidence_class = "score-high" if pred['score'] > 0.7 else "score-medium"
|
308 |
+
results_html += f"""
|
309 |
+
<div class="result-box">
|
310 |
+
<span class="{confidence_class}">{pred['score']:.1%}</span> -
|
311 |
+
{translate_label(pred['label'])}
|
312 |
+
</div>
|
313 |
+
"""
|
314 |
+
|
315 |
+
# Add image and close HTML
|
316 |
+
results_html += f"""
|
317 |
+
</div>
|
318 |
+
<div>
|
319 |
+
<h2>🎯 Fraktur Lokalisation</h2>
|
320 |
+
<img src="{result_image_b64}" alt="Analyzed image">
|
321 |
+
</div>
|
322 |
+
</div>
|
323 |
+
|
324 |
+
<a href="/" class="back-button">← Zurück</a>
|
325 |
+
</div>
|
326 |
</body>
|
327 |
+
</html>
|
328 |
"""
|
329 |
+
|
330 |
+
return results_html
|
331 |
+
|
332 |
except Exception as e:
|
333 |
return f"""
|
334 |
<body style="font-family: Arial; max-width: 800px; margin: 0 auto; padding: 20px;">
|
335 |
<h1>Fehler</h1>
|
336 |
<p>Ein Fehler ist aufgetreten: {str(e)}</p>
|
337 |
<br>
|
338 |
+
<a href="/" class="back-button">← Zurück</a>
|
339 |
</body>
|
340 |
"""
|
341 |
|