File size: 2,912 Bytes
a326b94
3bb1400
6ea5ee2
3bb1400
 
0000f4a
3bb1400
005d8cf
 
f0f1078
3bb1400
0000f4a
3bb1400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0000f4a
3bb1400
 
 
 
 
 
0000f4a
3bb1400
 
 
 
 
 
 
6ea5ee2
 
 
 
3bb1400
 
 
 
 
 
 
 
6ea5ee2
3bb1400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ea5ee2
3bb1400
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import streamlit as st
from transformers import pipeline
import torch
from PIL import Image, ImageDraw
import io

st.set_page_config(page_title="Détection de Fractures Osseuses", layout="wide")

@st.cache_resource
def load_model():
    return pipeline("object-detection", model="D3STRON/bone-fracture-detr")

def draw_boxes(image, predictions):
    draw = ImageDraw.Draw(image)
    for pred in predictions:
        box = pred['box']
        label = f"{pred['label']} ({pred['score']:.2%})"
        
        # Draw bounding box
        draw.rectangle(
            [(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
            outline="red",
            width=3
        )
        
        # Draw label background
        text_bbox = draw.textbbox((box['xmin'], box['ymin']), label)
        draw.rectangle(text_bbox, fill="red")
        
        # Draw label text
        draw.text(
            (box['xmin'], box['ymin']),
            label,
            fill="white"
        )
    return image

def main():
    st.title("🦴 Détecteur de Fractures Osseuses")
    st.write("Téléchargez une radiographie pour détecter les fractures osseuses.")

    pipe = load_model()
    
    uploaded_file = st.file_uploader(
        "Choisissez une image de radiographie", 
        type=['png', 'jpg', 'jpeg']
    )

    conf_threshold = st.slider(
        "Seuil de confiance",
        min_value=0.0,
        max_value=1.0,
        value=0.5,
        step=0.05
    )

    if uploaded_file:
        col1, col2 = st.columns(2)
        
        # Original image
        image = Image.open(uploaded_file)
        col1.header("Image originale")
        col1.image(image)

        # Process image
        with st.spinner("Analyse en cours..."):
            predictions = pipe(image)
            
            # Filter predictions based on confidence threshold
            filtered_preds = [
                pred for pred in predictions 
                if pred['score'] >= conf_threshold
            ]
            
            # Draw boxes on a copy of the image
            result_image = image.copy()
            result_image = draw_boxes(result_image, filtered_preds)
            
            # Display results
            col2.header("Résultats de la détection")
            col2.image(result_image)
            
            # Display detailed predictions
            if filtered_preds:
                st.subheader("Détails des détections")
                for pred in filtered_preds:
                    st.write(
                        f"• Type: {pred['label']} - "
                        f"Confiance: {pred['score']:.2%}"
                    )
            else:
                st.warning(
                    "Aucune fracture détectée avec le seuil de confiance actuel. "
                    "Essayez de baisser le seuil pour plus de résultats."
                )

if __name__ == "__main__":
    main()