radpid / app.py
yassonee's picture
Update app.py
3cabc2b verified
raw
history blame
1.89 kB
import streamlit as st
from transformers import pipeline
from PIL import Image
import numpy as np
import cv2
st.set_page_config(page_title="Détection de fractures osseuses")
st.title("Détection de fractures osseuses par rayons X")
@st.cache_resource
def load_model():
return pipeline(
"object-detection",
model="anirban22/detr-resnet-50-med_fracture",
threshold=0.1
)
model = load_model()
uploaded_file = st.file_uploader("Téléchargez une image radiographique", type=["jpg", "jpeg", "png"])
if uploaded_file:
# Convert uploaded file to PIL Image
image = Image.open(uploaded_file).convert('RGB')
if image.size[0] > 800:
ratio = 800.0 / image.size[0]
size = (800, int(image.size[1] * ratio))
image = image.resize(size, Image.Resampling.LANCZOS)
# Pass PIL Image directly to model
predictions = model(image)
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Image originale", use_container_width=True)
with col2:
img_array = np.array(image)
for pred in predictions:
box = pred['box']
score = pred['score']
x1, y1, x2, y2 = [int(i) for i in [box['xmin'], box['ymin'], box['xmax'], box['ymax']]]
cv2.rectangle(img_array, (x1, y1), (x2, y2), (255, 0, 0), 3)
text = f"Fracture: {score:.2f}"
cv2.putText(img_array, text, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
st.image(img_array, caption="Détection des fractures", use_container_width=True)
if predictions:
st.subheader(f"🚨 {len(predictions)} fractures détectées:")
for idx, pred in enumerate(predictions, 1):
st.warning(f"Fracture {idx}: Confiance {pred['score']*100:.1f}%")
else:
st.warning("⚠️ Aucune fracture détectée")