|
import streamlit as st |
|
from transformers import AutoModelForObjectDetection |
|
import torch |
|
from PIL import Image |
|
import numpy as np |
|
import cv2 |
|
|
|
st.set_page_config(page_title="Détection de nodules pulmonaires") |
|
st.title("Détection de nodules pulmonaires sur images scanner") |
|
|
|
@st.cache_resource |
|
def load_model(): |
|
model = AutoModelForObjectDetection.from_pretrained("monai-test/lung_nodule_ct_detection") |
|
model.eval() |
|
return model |
|
|
|
def process_image(image): |
|
|
|
img_array = np.array(image.convert('L')) |
|
|
|
normalized = (img_array - img_array.min()) / (img_array.max() - img_array.min()) |
|
|
|
resized = cv2.resize(normalized, (512, 512)) |
|
|
|
tensor = torch.FloatTensor(resized).unsqueeze(0).unsqueeze(0) |
|
return tensor |
|
|
|
try: |
|
model = load_model() |
|
|
|
uploaded_file = st.file_uploader("Téléchargez une image scanner", type=["jpg", "jpeg", "png"]) |
|
|
|
if uploaded_file: |
|
image = Image.open(uploaded_file) |
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
st.image(image, caption="Image originale", use_container_width=True) |
|
|
|
with col2: |
|
with torch.no_grad(): |
|
input_tensor = process_image(image) |
|
predictions = model(input_tensor) |
|
|
|
|
|
img_array = np.array(image) |
|
for pred in predictions: |
|
if pred['score'] > 0.5: |
|
box = pred['box'] |
|
x1, y1, x2, y2 = map(int, [box['xmin'], box['ymin'], box['xmax'], box['ymax']]) |
|
cv2.rectangle(img_array, (x1, y1), (x2, y2), (255, 0, 0), 2) |
|
text = f"Nodule: {pred['score']:.2f}" |
|
cv2.putText(img_array, text, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) |
|
|
|
st.image(img_array, caption="Détections", use_container_width=True) |
|
|
|
|
|
if len(predictions) > 0: |
|
st.warning(f"⚠️ {len(predictions)} nodules détectés") |
|
for i, pred in enumerate(predictions, 1): |
|
if pred['score'] > 0.5: |
|
st.write(f"Nodule {i}: Confiance {pred['score']:.1%}") |
|
else: |
|
st.success("✅ Aucun nodule détecté") |
|
|
|
except Exception as e: |
|
st.error(f"Erreur lors du chargement du modèle: {str(e)}") |
|
st.info("Veuillez vérifier que le modèle est correctement configuré sur Hugging Face.") |