radpid / app.py
yassonee's picture
Update app.py
d7739b8 verified
raw
history blame
2.29 kB
import streamlit as st
from transformers import pipeline
from PIL import Image
import numpy as np
import cv2
st.set_page_config(page_title="Détection de fractures osseuses")
st.title("Détection de fractures osseuses par rayons X")
@st.cache_resource
def load_model():
return pipeline(
"object-detection",
model="anirban22/detr-resnet-50-med_fracture",
threshold=0.1
)
model = load_model()
def enhance_image(img):
img_array = np.array(img)
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
enhanced = clahe.apply(gray)
return cv2.cvtColor(enhanced, cv2.COLOR_GRAY2RGB)
uploaded_file = st.file_uploader("Téléchargez une image radiographique", type=["jpg", "jpeg", "png"])
if uploaded_file:
image = Image.open(uploaded_file).convert('RGB')
if image.size[0] > 800:
ratio = 800.0 / image.size[0]
size = (800, int(image.size[1] * ratio))
image = image.resize(size, Image.Resampling.LANCZOS)
enhanced_image = enhance_image(image)
predictions = model(enhanced_image)
col1, col2 = st.columns(2)
with col1:
st.image(image, caption="Image originale", use_container_width=True)
with col2:
output_img = np.array(image).copy()
for pred in predictions:
box = pred['box']
score = pred['score']
x1, y1, x2, y2 = [int(i) for i in [box['xmin'], box['ymin'], box['xmax'], box['ymax']]]
cv2.rectangle(output_img, (x1, y1), (x2, y2), (255, 0, 0), 3)
text = f"Fracture: {score:.2f}"
cv2.putText(output_img, text, (x1, y1-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 2)
st.image(output_img, caption="Détection des fractures", use_container_width=True)
st.subheader("Résultats")
if predictions:
for idx, pred in enumerate(predictions, 1):
st.warning(f"⚠️ Fracture {idx} détectée (Confiance: {pred['score']*100:.1f}%)")
else:
st.warning("⚠️ Aucune fracture n'a été détectée avec certitude")
else:
st.info("Veuillez télécharger une image radiographique pour l'analyse.")