Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,28 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
-
from PIL import Image, ImageDraw
|
4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
layout="wide",
|
9 |
-
initial_sidebar_state="collapsed"
|
10 |
-
)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
</style>
|
21 |
-
""", unsafe_allow_html=True)
|
22 |
|
|
|
23 |
@st.cache_resource
|
24 |
def load_models():
|
25 |
return {
|
@@ -29,104 +32,78 @@ def load_models():
|
|
29 |
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
30 |
}
|
31 |
|
32 |
-
|
33 |
-
translations = {
|
34 |
-
"fracture": "Knochenbruch",
|
35 |
-
"no fracture": "Kein Bruch",
|
36 |
-
"normal": "Normal",
|
37 |
-
"abnormal": "Abnormal"
|
38 |
-
}
|
39 |
-
for eng, deu in translations.items():
|
40 |
-
if eng.lower() in label.lower():
|
41 |
-
return deu
|
42 |
-
return label
|
43 |
|
44 |
-
def draw_boxes(image, predictions):
|
45 |
draw = ImageDraw.Draw(image)
|
46 |
-
for
|
|
|
|
|
47 |
box = pred['box']
|
48 |
-
label = f"{
|
49 |
|
50 |
draw.rectangle(
|
51 |
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
52 |
-
outline="
|
53 |
width=2
|
54 |
)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
return image
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def main():
|
62 |
-
st.title("🦴
|
63 |
-
|
64 |
-
models = load_models()
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
min_value=0.0,
|
70 |
-
max_value=1.0,
|
71 |
-
value=0.60,
|
72 |
-
step=0.01
|
73 |
-
)
|
74 |
|
75 |
-
uploaded_file = st.file_uploader(
|
76 |
-
"Röntgenbild hochladen",
|
77 |
-
type=['png', 'jpg', 'jpeg'],
|
78 |
-
key="xray_upload"
|
79 |
-
)
|
80 |
-
|
81 |
if uploaded_file:
|
82 |
-
|
83 |
-
|
84 |
-
with col1:
|
85 |
-
image = Image.open(uploaded_file)
|
86 |
-
max_size = (250, 250)
|
87 |
-
image.thumbnail(max_size, Image.Resampling.LANCZOS)
|
88 |
-
st.image(image, caption="Original Röntgenbild", use_container_width=True)
|
89 |
-
|
90 |
-
with col2:
|
91 |
-
tab1, tab2 = st.tabs(["📊 Klassifizierung", "🔍 Erkennung"])
|
92 |
-
|
93 |
-
with tab1:
|
94 |
-
for name in ["Heem2", "Nandodeomkar"]:
|
95 |
-
with st.container():
|
96 |
-
st.subheader(f"Modell: {name}")
|
97 |
-
with st.spinner("Analyse läuft..."):
|
98 |
-
predictions = models[name](image)
|
99 |
-
for pred in predictions:
|
100 |
-
if pred['score'] >= conf_threshold:
|
101 |
-
score_color = "green" if pred['score'] > 0.7 else "orange"
|
102 |
-
st.markdown(f"""
|
103 |
-
<div style='padding: 10px; border-radius: 5px; background-color: #f0f2f6;'>
|
104 |
-
<span style='color: {score_color}; font-weight: bold;'>
|
105 |
-
{pred['score']:.1%}
|
106 |
-
</span> - {translate_label(pred['label'])}
|
107 |
-
</div>
|
108 |
-
""", unsafe_allow_html=True)
|
109 |
-
|
110 |
-
with tab2:
|
111 |
-
st.subheader("Modell: D3STRON")
|
112 |
-
with st.spinner("Erkennung läuft..."):
|
113 |
-
predictions = models["D3STRON"](image)
|
114 |
-
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
|
115 |
-
|
116 |
-
if filtered_preds:
|
117 |
-
result_image = image.copy()
|
118 |
-
result_image = draw_boxes(result_image, filtered_preds)
|
119 |
-
st.image(result_image, use_container_width=True)
|
120 |
-
|
121 |
-
for pred in filtered_preds:
|
122 |
-
st.markdown(f"""
|
123 |
-
<div style='padding: 8px; border-left: 4px solid #FF6B6B;
|
124 |
-
margin: 5px 0; background-color: #f0f2f6;'>
|
125 |
-
{translate_label(pred['label'])}: {pred['score']:.1%}
|
126 |
-
</div>
|
127 |
-
""", unsafe_allow_html=True)
|
128 |
-
else:
|
129 |
-
st.info("Keine Erkennungen über dem Schwellenwert")
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
|
|
3 |
import torch
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
import io
|
6 |
+
import base64
|
7 |
+
from fastapi import FastAPI, File, UploadFile
|
8 |
+
from fastapi.middleware.cors import CORSMiddleware
|
9 |
+
import numpy as np
|
10 |
+
import json
|
11 |
+
from starlette.responses import JSONResponse
|
12 |
|
13 |
+
# FastAPI app
|
14 |
+
app = FastAPI()
|
|
|
|
|
|
|
15 |
|
16 |
+
# Enable CORS
|
17 |
+
app.add_middleware(
|
18 |
+
CORSMiddleware,
|
19 |
+
allow_origins=["*"],
|
20 |
+
allow_credentials=True,
|
21 |
+
allow_methods=["*"],
|
22 |
+
allow_headers=["*"],
|
23 |
+
)
|
|
|
|
|
24 |
|
25 |
+
# Load models
|
26 |
@st.cache_resource
|
27 |
def load_models():
|
28 |
return {
|
|
|
32 |
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
33 |
}
|
34 |
|
35 |
+
models = load_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
def draw_boxes(image, predictions, threshold=0.6):
|
38 |
draw = ImageDraw.Draw(image)
|
39 |
+
filtered_preds = [p for p in predictions if p['score'] >= threshold]
|
40 |
+
|
41 |
+
for pred in filtered_preds:
|
42 |
box = pred['box']
|
43 |
+
label = f"{pred['label']} ({pred['score']:.2%})"
|
44 |
|
45 |
draw.rectangle(
|
46 |
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
47 |
+
outline="red",
|
48 |
width=2
|
49 |
)
|
50 |
|
51 |
+
draw.text((box['xmin'], box['ymin']), label, fill="red")
|
52 |
+
|
53 |
+
return image, filtered_preds
|
|
|
54 |
|
55 |
+
# API Endpoint
|
56 |
+
@app.post("/detect")
|
57 |
+
async def detect_fracture(file: UploadFile = File(...), confidence: float = 0.6):
|
58 |
+
try:
|
59 |
+
# Read and process image
|
60 |
+
contents = await file.read()
|
61 |
+
image = Image.open(io.BytesIO(contents))
|
62 |
+
|
63 |
+
# Get predictions from all models
|
64 |
+
results = {}
|
65 |
+
|
66 |
+
# Object detection models
|
67 |
+
detection_preds = models["D3STRON"](image)
|
68 |
+
result_image = image.copy()
|
69 |
+
result_image, filtered_detections = draw_boxes(result_image, detection_preds, confidence)
|
70 |
+
|
71 |
+
# Save result image
|
72 |
+
img_byte_arr = io.BytesIO()
|
73 |
+
result_image.save(img_byte_arr, format='PNG')
|
74 |
+
img_byte_arr = img_byte_arr.getvalue()
|
75 |
+
img_b64 = base64.b64encode(img_byte_arr).decode()
|
76 |
+
|
77 |
+
# Classification models
|
78 |
+
class_results = {
|
79 |
+
"Heem2": models["Heem2"](image),
|
80 |
+
"Nandodeomkar": models["Nandodeomkar"](image)
|
81 |
+
}
|
82 |
+
|
83 |
+
return JSONResponse({
|
84 |
+
"success": True,
|
85 |
+
"detections": filtered_detections,
|
86 |
+
"classifications": class_results,
|
87 |
+
"image": img_b64
|
88 |
+
})
|
89 |
+
|
90 |
+
except Exception as e:
|
91 |
+
return JSONResponse({
|
92 |
+
"success": False,
|
93 |
+
"error": str(e)
|
94 |
+
})
|
95 |
+
|
96 |
+
# Streamlit UI
|
97 |
def main():
|
98 |
+
st.title("🦴 Fraktur Detektion")
|
|
|
|
|
99 |
|
100 |
+
# UI elements...
|
101 |
+
uploaded_file = st.file_uploader("Röntgenbild hochladen", type=['png', 'jpg', 'jpeg'])
|
102 |
+
confidence = st.slider("Konfidenzschwelle", 0.0, 1.0, 0.6, 0.05)
|
|
|
|
|
|
|
|
|
|
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
if uploaded_file:
|
105 |
+
# Process image and display results...
|
106 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
main()
|