Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,33 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
|
6 |
-
st.set_page_config(page_title="
|
7 |
-
|
8 |
-
def load_models():
|
9 |
-
models = {
|
10 |
-
'Fracture': pipeline("image-classification", model="stanfordaimi/fracture-detection-vit"),
|
11 |
-
'Pneumothorax': pipeline("image-classification", model="ahmedos/pneumothorax-detection"),
|
12 |
-
'Pneumonie': pipeline("image-classification", model="ahmedos/pneumonia-detection")
|
13 |
-
}
|
14 |
-
return models
|
15 |
|
16 |
@st.cache_resource
|
17 |
-
def
|
18 |
-
return
|
19 |
|
20 |
def main():
|
21 |
-
st.title("
|
22 |
|
23 |
-
|
24 |
-
models = get_models()
|
25 |
|
26 |
-
uploaded_file = st.file_uploader("Télécharger une
|
27 |
|
28 |
if uploaded_file:
|
29 |
image = Image.open(uploaded_file)
|
30 |
-
st.image(image, caption="
|
31 |
-
|
32 |
-
col1, col2, col3 = st.columns(3)
|
33 |
-
|
34 |
-
with col1:
|
35 |
-
if st.button("Détecter Fracture"):
|
36 |
-
with st.spinner("Analyse en cours..."):
|
37 |
-
try:
|
38 |
-
result = models['Fracture'](image)
|
39 |
-
st.write(f"Résultat: {result[0]['label']}")
|
40 |
-
st.write(f"Confiance: {result[0]['score']:.2%}")
|
41 |
-
except Exception as e:
|
42 |
-
st.error(f"Erreur: {str(e)}")
|
43 |
-
|
44 |
-
with col2:
|
45 |
-
if st.button("Détecter Pneumothorax"):
|
46 |
-
with st.spinner("Analyse en cours..."):
|
47 |
-
try:
|
48 |
-
result = models['Pneumothorax'](image)
|
49 |
-
st.write(f"Résultat: {result[0]['label']}")
|
50 |
-
st.write(f"Confiance: {result[0]['score']:.2%}")
|
51 |
-
except Exception as e:
|
52 |
-
st.error(f"Erreur: {str(e)}")
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
st.error(f"Erreur: {str(e)}")
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification, pipeline
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
|
6 |
+
st.set_page_config(page_title="Détection de fractures", layout="wide")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
@st.cache_resource
|
9 |
+
def load_model():
|
10 |
+
return pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray")
|
11 |
|
12 |
def main():
|
13 |
+
st.title("Détection de fractures osseuses")
|
14 |
|
15 |
+
model = load_model()
|
|
|
16 |
|
17 |
+
uploaded_file = st.file_uploader("Télécharger une radiographie", type=["jpg", "jpeg", "png"])
|
18 |
|
19 |
if uploaded_file:
|
20 |
image = Image.open(uploaded_file)
|
21 |
+
st.image(image, caption="Radiographie", use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
if st.button("Analyser"):
|
24 |
+
with st.spinner("Analyse en cours..."):
|
25 |
+
try:
|
26 |
+
result = model(image)
|
27 |
+
st.write(f"Résultat: {result[0]['label']}")
|
28 |
+
st.write(f"Confiance: {result[0]['score']:.2%}")
|
29 |
+
except Exception as e:
|
30 |
+
st.error(f"Erreur: {str(e)}")
|
|
|
31 |
|
32 |
if __name__ == "__main__":
|
33 |
main()
|