Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,13 @@ import torch
|
|
4 |
from PIL import Image, ImageDraw
|
5 |
import io
|
6 |
import base64
|
7 |
-
from fastapi import FastAPI, File, UploadFile
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
import numpy as np
|
10 |
import json
|
11 |
from starlette.responses import JSONResponse
|
|
|
|
|
12 |
|
13 |
# FastAPI app
|
14 |
app = FastAPI()
|
@@ -53,17 +55,13 @@ def draw_boxes(image, predictions, threshold=0.6):
|
|
53 |
return image, filtered_preds
|
54 |
|
55 |
# API Endpoint
|
56 |
-
@app.post("/
|
57 |
-
async def
|
58 |
try:
|
59 |
-
# Read and process image
|
60 |
contents = await file.read()
|
61 |
image = Image.open(io.BytesIO(contents))
|
62 |
|
63 |
-
#
|
64 |
-
results = {}
|
65 |
-
|
66 |
-
# Object detection models
|
67 |
detection_preds = models["D3STRON"](image)
|
68 |
result_image = image.copy()
|
69 |
result_image, filtered_detections = draw_boxes(result_image, detection_preds, confidence)
|
@@ -74,7 +72,7 @@ async def detect_fracture(file: UploadFile = File(...), confidence: float = 0.6)
|
|
74 |
img_byte_arr = img_byte_arr.getvalue()
|
75 |
img_b64 = base64.b64encode(img_byte_arr).decode()
|
76 |
|
77 |
-
#
|
78 |
class_results = {
|
79 |
"Heem2": models["Heem2"](image),
|
80 |
"Nandodeomkar": models["Nandodeomkar"](image)
|
@@ -91,19 +89,51 @@ async def detect_fracture(file: UploadFile = File(...), confidence: float = 0.6)
|
|
91 |
return JSONResponse({
|
92 |
"success": False,
|
93 |
"error": str(e)
|
94 |
-
})
|
95 |
|
96 |
# Streamlit UI
|
97 |
def main():
|
98 |
st.title("🦴 Fraktur Detektion")
|
99 |
|
100 |
-
# UI elements...
|
101 |
uploaded_file = st.file_uploader("Röntgenbild hochladen", type=['png', 'jpg', 'jpeg'])
|
102 |
confidence = st.slider("Konfidenzschwelle", 0.0, 1.0, 0.6, 0.05)
|
103 |
|
104 |
if uploaded_file:
|
105 |
-
#
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
main()
|
|
|
4 |
from PIL import Image, ImageDraw
|
5 |
import io
|
6 |
import base64
|
7 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
import numpy as np
|
10 |
import json
|
11 |
from starlette.responses import JSONResponse
|
12 |
+
import uvicorn
|
13 |
+
from threading import Thread
|
14 |
|
15 |
# FastAPI app
|
16 |
app = FastAPI()
|
|
|
55 |
return image, filtered_preds
|
56 |
|
57 |
# API Endpoint
|
58 |
+
@app.post("/api/predict")
|
59 |
+
async def predict(file: UploadFile = File(...), confidence: float = Form(default=0.6)):
|
60 |
try:
|
|
|
61 |
contents = await file.read()
|
62 |
image = Image.open(io.BytesIO(contents))
|
63 |
|
64 |
+
# Object detection
|
|
|
|
|
|
|
65 |
detection_preds = models["D3STRON"](image)
|
66 |
result_image = image.copy()
|
67 |
result_image, filtered_detections = draw_boxes(result_image, detection_preds, confidence)
|
|
|
72 |
img_byte_arr = img_byte_arr.getvalue()
|
73 |
img_b64 = base64.b64encode(img_byte_arr).decode()
|
74 |
|
75 |
+
# Classifications
|
76 |
class_results = {
|
77 |
"Heem2": models["Heem2"](image),
|
78 |
"Nandodeomkar": models["Nandodeomkar"](image)
|
|
|
89 |
return JSONResponse({
|
90 |
"success": False,
|
91 |
"error": str(e)
|
92 |
+
}, status_code=500)
|
93 |
|
94 |
# Streamlit UI
|
95 |
def main():
|
96 |
st.title("🦴 Fraktur Detektion")
|
97 |
|
|
|
98 |
uploaded_file = st.file_uploader("Röntgenbild hochladen", type=['png', 'jpg', 'jpeg'])
|
99 |
confidence = st.slider("Konfidenzschwelle", 0.0, 1.0, 0.6, 0.05)
|
100 |
|
101 |
if uploaded_file:
|
102 |
+
# Afficher l'image originale
|
103 |
+
image = Image.open(uploaded_file)
|
104 |
+
st.image(image, caption="Original Röntgenbild", use_column_width=True)
|
105 |
+
|
106 |
+
if st.button("Analysieren"):
|
107 |
+
with st.spinner('Analyse läuft...'):
|
108 |
+
# Object detection
|
109 |
+
detection_preds = models["D3STRON"](image)
|
110 |
+
result_image = image.copy()
|
111 |
+
result_image, filtered_detections = draw_boxes(result_image, detection_preds, confidence)
|
112 |
+
|
113 |
+
# Afficher l'image avec les détections
|
114 |
+
st.image(result_image, caption="Erkannte Frakturen", use_column_width=True)
|
115 |
+
|
116 |
+
# Afficher les détections
|
117 |
+
st.subheader("Detektionen:")
|
118 |
+
for detection in filtered_detections:
|
119 |
+
st.write(f"- {detection['label']}: {detection['score']:.2%}")
|
120 |
+
|
121 |
+
# Classifications
|
122 |
+
st.subheader("Klassifikationen:")
|
123 |
+
class_results = {
|
124 |
+
"Heem2": models["Heem2"](image),
|
125 |
+
"Nandodeomkar": models["Nandodeomkar"](image)
|
126 |
+
}
|
127 |
+
st.json(class_results)
|
128 |
+
|
129 |
+
def run_fastapi():
|
130 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
131 |
|
132 |
if __name__ == "__main__":
|
133 |
+
# Démarrer FastAPI dans un thread séparé
|
134 |
+
api_thread = Thread(target=run_fastapi)
|
135 |
+
api_thread.daemon = True
|
136 |
+
api_thread.start()
|
137 |
+
|
138 |
+
# Lancer Streamlit
|
139 |
main()
|