Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
-
import torch
|
4 |
from PIL import Image, ImageDraw
|
5 |
-
import
|
6 |
-
import base64
|
7 |
-
from fastapi import FastAPI, File, UploadFile
|
8 |
-
from fastapi.middleware.cors import CORSMiddleware
|
9 |
-
import numpy as np
|
10 |
-
import json
|
11 |
-
from starlette.responses import JSONResponse
|
12 |
-
|
13 |
-
# FastAPI app
|
14 |
-
app = FastAPI()
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
allow_credentials=True,
|
21 |
-
allow_methods=["*"],
|
22 |
-
allow_headers=["*"],
|
23 |
)
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
@st.cache_resource
|
27 |
def load_models():
|
28 |
return {
|
@@ -32,78 +29,104 @@ def load_models():
|
|
32 |
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
33 |
}
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
def draw_boxes(image, predictions
|
38 |
draw = ImageDraw.Draw(image)
|
39 |
-
|
40 |
-
|
41 |
-
for pred in filtered_preds:
|
42 |
box = pred['box']
|
43 |
-
label = f"{pred['label']} ({pred['score']:.2%})"
|
44 |
|
45 |
draw.rectangle(
|
46 |
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
47 |
-
outline="
|
48 |
width=2
|
49 |
)
|
50 |
|
51 |
-
draw.
|
52 |
-
|
53 |
-
|
|
|
54 |
|
55 |
-
# API Endpoint
|
56 |
-
@app.post("/detect")
|
57 |
-
async def detect_fracture(file: UploadFile = File(...), confidence: float = 0.6):
|
58 |
-
try:
|
59 |
-
# Read and process image
|
60 |
-
contents = await file.read()
|
61 |
-
image = Image.open(io.BytesIO(contents))
|
62 |
-
|
63 |
-
# Get predictions from all models
|
64 |
-
results = {}
|
65 |
-
|
66 |
-
# Object detection models
|
67 |
-
detection_preds = models["D3STRON"](image)
|
68 |
-
result_image = image.copy()
|
69 |
-
result_image, filtered_detections = draw_boxes(result_image, detection_preds, confidence)
|
70 |
-
|
71 |
-
# Save result image
|
72 |
-
img_byte_arr = io.BytesIO()
|
73 |
-
result_image.save(img_byte_arr, format='PNG')
|
74 |
-
img_byte_arr = img_byte_arr.getvalue()
|
75 |
-
img_b64 = base64.b64encode(img_byte_arr).decode()
|
76 |
-
|
77 |
-
# Classification models
|
78 |
-
class_results = {
|
79 |
-
"Heem2": models["Heem2"](image),
|
80 |
-
"Nandodeomkar": models["Nandodeomkar"](image)
|
81 |
-
}
|
82 |
-
|
83 |
-
return JSONResponse({
|
84 |
-
"success": True,
|
85 |
-
"detections": filtered_detections,
|
86 |
-
"classifications": class_results,
|
87 |
-
"image": img_b64
|
88 |
-
})
|
89 |
-
|
90 |
-
except Exception as e:
|
91 |
-
return JSONResponse({
|
92 |
-
"success": False,
|
93 |
-
"error": str(e)
|
94 |
-
})
|
95 |
-
|
96 |
-
# Streamlit UI
|
97 |
def main():
|
98 |
-
st.title("🦴
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
if uploaded_file:
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
|
|
3 |
from PIL import Image, ImageDraw
|
4 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
st.set_page_config(
|
7 |
+
page_title="Knochenbrucherkennung",
|
8 |
+
layout="wide",
|
9 |
+
initial_sidebar_state="collapsed"
|
|
|
|
|
|
|
10 |
)
|
11 |
|
12 |
+
st.markdown("""
|
13 |
+
<style>
|
14 |
+
.main > div {
|
15 |
+
padding: 2rem;
|
16 |
+
background: #f8f9fa;
|
17 |
+
border-radius: 1rem;
|
18 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
19 |
+
}
|
20 |
+
</style>
|
21 |
+
""", unsafe_allow_html=True)
|
22 |
+
|
23 |
@st.cache_resource
|
24 |
def load_models():
|
25 |
return {
|
|
|
29 |
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
30 |
}
|
31 |
|
32 |
+
def translate_label(label):
|
33 |
+
translations = {
|
34 |
+
"fracture": "Knochenbruch",
|
35 |
+
"no fracture": "Kein Bruch",
|
36 |
+
"normal": "Normal",
|
37 |
+
"abnormal": "Abnormal"
|
38 |
+
}
|
39 |
+
for eng, deu in translations.items():
|
40 |
+
if eng.lower() in label.lower():
|
41 |
+
return deu
|
42 |
+
return label
|
43 |
|
44 |
+
def draw_boxes(image, predictions):
|
45 |
draw = ImageDraw.Draw(image)
|
46 |
+
for pred in predictions:
|
|
|
|
|
47 |
box = pred['box']
|
48 |
+
label = f"{translate_label(pred['label'])} ({pred['score']:.2%})"
|
49 |
|
50 |
draw.rectangle(
|
51 |
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
52 |
+
outline="#FF6B6B",
|
53 |
width=2
|
54 |
)
|
55 |
|
56 |
+
text_bbox = draw.textbbox((box['xmin'], box['ymin']), label)
|
57 |
+
draw.rectangle(text_bbox, fill="#FF6B6B")
|
58 |
+
draw.text((box['xmin'], box['ymin']), label, fill="white")
|
59 |
+
return image
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def main():
|
62 |
+
st.title("🦴 Knochenbrucherkennung System")
|
63 |
+
|
64 |
+
models = load_models()
|
65 |
|
66 |
+
with st.expander("⚙️ Einstellungen", expanded=True):
|
67 |
+
conf_threshold = st.slider(
|
68 |
+
"Konfidenzschwelle",
|
69 |
+
min_value=0.0,
|
70 |
+
max_value=1.0,
|
71 |
+
value=0.60,
|
72 |
+
step=0.01
|
73 |
+
)
|
74 |
|
75 |
+
uploaded_file = st.file_uploader(
|
76 |
+
"Röntgenbild hochladen",
|
77 |
+
type=['png', 'jpg', 'jpeg'],
|
78 |
+
key="xray_upload"
|
79 |
+
)
|
80 |
+
|
81 |
if uploaded_file:
|
82 |
+
col1, col2 = st.columns([1, 2])
|
83 |
+
|
84 |
+
with col1:
|
85 |
+
image = Image.open(uploaded_file)
|
86 |
+
max_size = (250, 250)
|
87 |
+
image.thumbnail(max_size, Image.Resampling.LANCZOS)
|
88 |
+
st.image(image, caption="Original Röntgenbild", use_container_width=True)
|
89 |
+
|
90 |
+
with col2:
|
91 |
+
tab1, tab2 = st.tabs(["📊 Klassifizierung", "🔍 Erkennung"])
|
92 |
+
|
93 |
+
with tab1:
|
94 |
+
for name in ["Heem2", "Nandodeomkar"]:
|
95 |
+
with st.container():
|
96 |
+
st.subheader(f"Modell: {name}")
|
97 |
+
with st.spinner("Analyse läuft..."):
|
98 |
+
predictions = models[name](image)
|
99 |
+
for pred in predictions:
|
100 |
+
if pred['score'] >= conf_threshold:
|
101 |
+
score_color = "green" if pred['score'] > 0.7 else "orange"
|
102 |
+
st.markdown(f"""
|
103 |
+
<div style='padding: 10px; border-radius: 5px; background-color: #f0f2f6;'>
|
104 |
+
<span style='color: {score_color}; font-weight: bold;'>
|
105 |
+
{pred['score']:.1%}
|
106 |
+
</span> - {translate_label(pred['label'])}
|
107 |
+
</div>
|
108 |
+
""", unsafe_allow_html=True)
|
109 |
+
|
110 |
+
with tab2:
|
111 |
+
st.subheader("Modell: D3STRON")
|
112 |
+
with st.spinner("Erkennung läuft..."):
|
113 |
+
predictions = models["D3STRON"](image)
|
114 |
+
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
|
115 |
+
|
116 |
+
if filtered_preds:
|
117 |
+
result_image = image.copy()
|
118 |
+
result_image = draw_boxes(result_image, filtered_preds)
|
119 |
+
st.image(result_image, use_container_width=True)
|
120 |
+
|
121 |
+
for pred in filtered_preds:
|
122 |
+
st.markdown(f"""
|
123 |
+
<div style='padding: 8px; border-left: 4px solid #FF6B6B;
|
124 |
+
margin: 5px 0; background-color: #f0f2f6;'>
|
125 |
+
{translate_label(pred['label'])}: {pred['score']:.1%}
|
126 |
+
</div>
|
127 |
+
""", unsafe_allow_html=True)
|
128 |
+
else:
|
129 |
+
st.info("Keine Erkennungen über dem Schwellenwert")
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
main()
|