Update app.py
Browse files
app.py
CHANGED
@@ -1,98 +1,56 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
-
import
|
4 |
-
from PIL import Image, ImageDraw
|
5 |
import io
|
6 |
|
7 |
-
st.set_page_config(page_title="
|
8 |
|
9 |
@st.cache_resource
|
10 |
def load_model():
|
11 |
-
return pipeline("
|
12 |
-
|
13 |
-
def draw_boxes(image, predictions):
|
14 |
-
draw = ImageDraw.Draw(image)
|
15 |
-
for pred in predictions:
|
16 |
-
box = pred['box']
|
17 |
-
label = f"{pred['label']} ({pred['score']:.2%})"
|
18 |
-
|
19 |
-
# Draw bounding box
|
20 |
-
draw.rectangle(
|
21 |
-
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
22 |
-
outline="red",
|
23 |
-
width=3
|
24 |
-
)
|
25 |
-
|
26 |
-
# Draw label background
|
27 |
-
text_bbox = draw.textbbox((box['xmin'], box['ymin']), label)
|
28 |
-
draw.rectangle(text_bbox, fill="red")
|
29 |
-
|
30 |
-
# Draw label text
|
31 |
-
draw.text(
|
32 |
-
(box['xmin'], box['ymin']),
|
33 |
-
label,
|
34 |
-
fill="white"
|
35 |
-
)
|
36 |
-
return image
|
37 |
|
38 |
def main():
|
39 |
-
st.title("🦴
|
40 |
-
st.write("
|
41 |
|
42 |
pipe = load_model()
|
43 |
|
44 |
uploaded_file = st.file_uploader(
|
45 |
-
"
|
46 |
type=['png', 'jpg', 'jpeg']
|
47 |
)
|
48 |
|
49 |
conf_threshold = st.slider(
|
50 |
-
"
|
51 |
min_value=0.0,
|
52 |
max_value=1.0,
|
53 |
-
value=0.
|
54 |
-
step=0.
|
55 |
)
|
56 |
|
57 |
if uploaded_file:
|
58 |
-
col1, col2 = st.columns(2)
|
59 |
-
|
60 |
-
# Original image
|
61 |
image = Image.open(uploaded_file)
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
with st.spinner("Analyse en cours..."):
|
67 |
predictions = pipe(image)
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
col2.header("Résultats de la détection")
|
81 |
-
col2.image(result_image)
|
82 |
-
|
83 |
-
# Display detailed predictions
|
84 |
-
if filtered_preds:
|
85 |
-
st.subheader("Détails des détections")
|
86 |
-
for pred in filtered_preds:
|
87 |
-
st.write(
|
88 |
-
f"• Type: {pred['label']} - "
|
89 |
-
f"Confiance: {pred['score']:.2%}"
|
90 |
-
)
|
91 |
-
else:
|
92 |
-
st.warning(
|
93 |
-
"Aucune fracture détectée avec le seuil de confiance actuel. "
|
94 |
-
"Essayez de baisser le seuil pour plus de résultats."
|
95 |
-
)
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
from PIL import Image
|
|
|
4 |
import io
|
5 |
|
6 |
+
st.set_page_config(page_title="Knochenbrucherkennung", layout="centered")
|
7 |
|
8 |
@st.cache_resource
|
9 |
def load_model():
|
10 |
+
return pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def main():
|
13 |
+
st.title("🦴 Knochenbrucherkennung")
|
14 |
+
st.write("Laden Sie ein Röntgenbild hoch.")
|
15 |
|
16 |
pipe = load_model()
|
17 |
|
18 |
uploaded_file = st.file_uploader(
|
19 |
+
"Röntgenbild auswählen",
|
20 |
type=['png', 'jpg', 'jpeg']
|
21 |
)
|
22 |
|
23 |
conf_threshold = st.slider(
|
24 |
+
"Konfidenzschwelle",
|
25 |
min_value=0.0,
|
26 |
max_value=1.0,
|
27 |
+
value=0.3,
|
28 |
+
step=0.01
|
29 |
)
|
30 |
|
31 |
if uploaded_file:
|
|
|
|
|
|
|
32 |
image = Image.open(uploaded_file)
|
33 |
+
|
34 |
+
# Redimensionner l'image
|
35 |
+
max_size = (400, 400)
|
36 |
+
image.thumbnail(max_size, Image.Resampling.LANCZOS)
|
37 |
+
|
38 |
+
st.image(image, caption="Hochgeladenes Bild")
|
39 |
|
40 |
+
with st.spinner("Analyse läuft..."):
|
|
|
41 |
predictions = pipe(image)
|
42 |
|
43 |
+
st.subheader("Ergebnisse")
|
44 |
+
for pred in predictions:
|
45 |
+
if pred['score'] >= conf_threshold:
|
46 |
+
label = "Bruch erkannt" if "fracture" in pred['label'].lower() else "Kein Bruch"
|
47 |
+
st.write(f"• Diagnose: {label}")
|
48 |
+
st.write(f"• Konfidenz: {pred['score']:.2%}")
|
49 |
+
|
50 |
+
if "fracture" in pred['label'].lower() and pred['score'] >= conf_threshold:
|
51 |
+
st.warning("⚠️ Möglicher Knochenbruch erkannt!")
|
52 |
+
else:
|
53 |
+
st.success("✅ Kein Bruch erkannt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
if __name__ == "__main__":
|
56 |
main()
|