Update app.py
Browse files
app.py
CHANGED
@@ -4,120 +4,27 @@ from PIL import Image, ImageDraw
|
|
4 |
import numpy as np
|
5 |
import os
|
6 |
|
7 |
-
# Configuration
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
st.set_page_config(
|
9 |
page_title="Fraktur Detektion",
|
10 |
layout="wide",
|
11 |
-
initial_sidebar_state="collapsed"
|
12 |
-
menu_items=None
|
13 |
)
|
14 |
|
15 |
-
|
16 |
-
st.markdown("""
|
17 |
-
<style>
|
18 |
-
.stApp {
|
19 |
-
background: #f0f2f5 !important;
|
20 |
-
}
|
21 |
-
|
22 |
-
.block-container {
|
23 |
-
padding-top: 0 !important;
|
24 |
-
padding-bottom: 0 !important;
|
25 |
-
max-width: 1400px !important;
|
26 |
-
}
|
27 |
-
|
28 |
-
.upload-container {
|
29 |
-
background: white;
|
30 |
-
padding: 1.5rem;
|
31 |
-
border-radius: 10px;
|
32 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
33 |
-
margin-bottom: 1rem;
|
34 |
-
text-align: center;
|
35 |
-
}
|
36 |
-
|
37 |
-
.results-container {
|
38 |
-
background: white;
|
39 |
-
padding: 1.5rem;
|
40 |
-
border-radius: 10px;
|
41 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
42 |
-
}
|
43 |
-
|
44 |
-
.result-box {
|
45 |
-
background: #f8f9fa;
|
46 |
-
padding: 0.75rem;
|
47 |
-
border-radius: 8px;
|
48 |
-
margin: 0.5rem 0;
|
49 |
-
border: 1px solid #e9ecef;
|
50 |
-
}
|
51 |
-
|
52 |
-
h1, h2, h3, h4, p {
|
53 |
-
color: #1a1a1a !important;
|
54 |
-
margin: 0.5rem 0 !important;
|
55 |
-
}
|
56 |
-
|
57 |
-
.stImage {
|
58 |
-
background: white;
|
59 |
-
padding: 0.5rem;
|
60 |
-
border-radius: 8px;
|
61 |
-
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
62 |
-
}
|
63 |
-
|
64 |
-
.stImage > img {
|
65 |
-
max-height: 300px !important;
|
66 |
-
width: auto !important;
|
67 |
-
margin: 0 auto !important;
|
68 |
-
display: block !important;
|
69 |
-
}
|
70 |
-
|
71 |
-
[data-testid="stFileUploader"] {
|
72 |
-
width: 100% !important;
|
73 |
-
}
|
74 |
-
|
75 |
-
.stFileUploaderFileName {
|
76 |
-
color: #1a1a1a !important;
|
77 |
-
}
|
78 |
-
|
79 |
-
.stButton > button {
|
80 |
-
width: 200px;
|
81 |
-
background-color: #f8f9fa !important;
|
82 |
-
color: #1a1a1a !important;
|
83 |
-
border: 1px solid #e9ecef !important;
|
84 |
-
padding: 0.5rem 1rem !important;
|
85 |
-
border-radius: 5px !important;
|
86 |
-
transition: all 0.3s ease !important;
|
87 |
-
}
|
88 |
-
|
89 |
-
.stButton > button:hover {
|
90 |
-
background-color: #e9ecef !important;
|
91 |
-
transform: translateY(-1px);
|
92 |
-
}
|
93 |
-
|
94 |
-
#MainMenu, footer, header {
|
95 |
-
display: none !important;
|
96 |
-
}
|
97 |
-
|
98 |
-
section[data-testid="stSidebar"] {
|
99 |
-
display: none !important;
|
100 |
-
}
|
101 |
-
|
102 |
-
/* Hide deprecation warning */
|
103 |
-
[data-testid="stExpander"], .element-container:has(>.stAlert) {
|
104 |
-
display: none !important;
|
105 |
-
}
|
106 |
-
</style>
|
107 |
-
""", unsafe_allow_html=True)
|
108 |
-
|
109 |
-
@st.cache_resource(show_spinner=True)
|
110 |
def load_models():
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
"
|
116 |
-
|
117 |
-
}
|
118 |
-
except Exception as e:
|
119 |
-
st.error(f"Fehler beim Laden der Modelle: {str(e)}")
|
120 |
-
return None
|
121 |
|
122 |
def translate_label(label):
|
123 |
translations = {
|
@@ -178,117 +85,114 @@ def draw_boxes(image, predictions):
|
|
178 |
return result_image
|
179 |
|
180 |
def main():
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
try:
|
184 |
models = load_models()
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
with
|
191 |
-
st.
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
label_visibility="collapsed"
|
196 |
)
|
197 |
-
|
198 |
-
|
199 |
-
with col1:
|
200 |
-
conf_threshold = st.slider(
|
201 |
-
"Konfidenzschwelle",
|
202 |
-
min_value=0.0,
|
203 |
-
max_value=1.0,
|
204 |
-
value=0.60,
|
205 |
-
step=0.05,
|
206 |
-
label_visibility="visible"
|
207 |
-
)
|
208 |
-
with col2:
|
209 |
-
analyze_button = st.button("Analysieren", use_container_width=True)
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
|
|
228 |
for pred in predictions_watcher:
|
229 |
-
if pred['score']
|
|
|
|
|
230 |
has_fracture = True
|
231 |
max_fracture_score = max(max_fracture_score, pred['score'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
-
|
234 |
-
st.write("
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
st.markdown("#### 🛡️ KnochenWächter")
|
241 |
-
for pred in predictions_watcher:
|
242 |
-
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
|
243 |
-
label_lower = pred['label'].lower()
|
244 |
-
if pred['score'] >= conf_threshold and 'fracture' in label_lower:
|
245 |
-
has_fracture = True
|
246 |
-
max_fracture_score = max(max_fracture_score, pred['score'])
|
247 |
-
st.markdown(f"""
|
248 |
-
<div class="result-box" style="color: #1a1a1a;">
|
249 |
-
<span style="color: {confidence_color}; font-weight: 500;">
|
250 |
-
{pred['score']:.1%}
|
251 |
-
</span> - {translate_label(pred['label'])}
|
252 |
-
</div>
|
253 |
-
""", unsafe_allow_html=True)
|
254 |
-
|
255 |
-
st.markdown("#### 🎓 RöntgenMeister")
|
256 |
-
for pred in predictions_master:
|
257 |
-
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
|
258 |
-
st.markdown(f"""
|
259 |
-
<div class="result-box" style="color: #1a1a1a;">
|
260 |
-
<span style="color: {confidence_color}; font-weight: 500;">
|
261 |
-
{pred['score']:.1%}
|
262 |
-
</span> - {translate_label(pred['label'])}
|
263 |
-
</div>
|
264 |
-
""", unsafe_allow_html=True)
|
265 |
-
|
266 |
-
if max_fracture_score > 0:
|
267 |
-
st.write("#### 📊 Wahrscheinlichkeit")
|
268 |
-
no_fracture_prob = 1 - max_fracture_score
|
269 |
-
st.markdown(f"""
|
270 |
-
<div class="result-box" style="color: #1a1a1a;">
|
271 |
-
Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
|
272 |
-
Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
|
273 |
-
</div>
|
274 |
-
""", unsafe_allow_html=True)
|
275 |
-
|
276 |
-
with col2:
|
277 |
-
predictions = models["KnochenAuge"](image)
|
278 |
-
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
|
279 |
-
|
280 |
-
if filtered_preds:
|
281 |
-
st.write("#### 🎯 Fraktur Lokalisation")
|
282 |
-
result_image = draw_boxes(image, filtered_preds)
|
283 |
-
st.image(result_image, use_container_width=True)
|
284 |
-
else:
|
285 |
-
st.write("#### 🖼️ Röntgenbild")
|
286 |
-
st.image(image, use_container_width=True)
|
287 |
-
except Exception as e:
|
288 |
-
st.error(f"Fehler bei der Bildanalyse: {str(e)}")
|
289 |
except Exception as e:
|
290 |
st.error(f"Ein Fehler ist aufgetreten: {str(e)}")
|
291 |
|
292 |
if __name__ == "__main__":
|
293 |
-
st.set_page_config(page_title="Fraktur Detektion", layout="wide", initial_sidebar_state="collapsed")
|
294 |
main()
|
|
|
4 |
import numpy as np
|
5 |
import os
|
6 |
|
7 |
+
# Configuration de base pour HF Spaces
|
8 |
+
os.environ["STREAMLIT_SERVER_PORT"] = "7860"
|
9 |
+
os.environ["STREAMLIT_SERVER_ADDRESS"] = "0.0.0.0"
|
10 |
+
os.environ["STREAMLIT_SERVER_HEADLESS"] = "true"
|
11 |
+
os.environ["STREAMLIT_SERVER_ENABLE_CORS"] = "true"
|
12 |
+
|
13 |
+
# Configuration de la page
|
14 |
st.set_page_config(
|
15 |
page_title="Fraktur Detektion",
|
16 |
layout="wide",
|
17 |
+
initial_sidebar_state="collapsed"
|
|
|
18 |
)
|
19 |
|
20 |
+
@st.cache_resource
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def load_models():
|
22 |
+
return {
|
23 |
+
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
|
24 |
+
"KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
|
25 |
+
"RöntgenMeister": pipeline("image-classification",
|
26 |
+
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
27 |
+
}
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def translate_label(label):
|
30 |
translations = {
|
|
|
85 |
return result_image
|
86 |
|
87 |
def main():
|
88 |
+
st.markdown("""
|
89 |
+
<style>
|
90 |
+
.stApp {background: #f0f2f5}
|
91 |
+
.block-container {max-width: 1400px; padding-top: 1rem; padding-bottom: 1rem}
|
92 |
+
div[data-testid="stToolbar"] {display: none}
|
93 |
+
#MainMenu {visibility: hidden}
|
94 |
+
footer {visibility: hidden}
|
95 |
+
.result-box {
|
96 |
+
background: #f8f9fa;
|
97 |
+
padding: 0.75rem;
|
98 |
+
border-radius: 8px;
|
99 |
+
margin: 0.5rem 0;
|
100 |
+
border: 1px solid #e9ecef;
|
101 |
+
}
|
102 |
+
</style>
|
103 |
+
""", unsafe_allow_html=True)
|
104 |
|
105 |
try:
|
106 |
models = load_models()
|
107 |
+
|
108 |
+
st.write("### 📤 Röntgenbild hochladen")
|
109 |
+
uploaded_file = st.file_uploader("Bild auswählen", type=['png', 'jpg', 'jpeg'], label_visibility="collapsed")
|
110 |
+
|
111 |
+
col1, col2 = st.columns([2, 1])
|
112 |
+
with col1:
|
113 |
+
conf_threshold = st.slider(
|
114 |
+
"Konfidenzschwelle",
|
115 |
+
min_value=0.0, max_value=1.0,
|
116 |
+
value=0.60, step=0.05
|
|
|
117 |
)
|
118 |
+
with col2:
|
119 |
+
analyze_button = st.button("Analysieren")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
if uploaded_file and analyze_button:
|
122 |
+
with st.spinner("Bild wird analysiert..."):
|
123 |
+
image = Image.open(uploaded_file)
|
124 |
+
results_container = st.container()
|
125 |
+
|
126 |
+
predictions_watcher = models["KnochenWächter"](image)
|
127 |
+
predictions_master = models["RöntgenMeister"](image)
|
128 |
+
predictions_locator = models["KnochenAuge"](image)
|
129 |
+
|
130 |
+
has_fracture = False
|
131 |
+
max_fracture_score = 0
|
132 |
+
filtered_locations = [p for p in predictions_locator
|
133 |
+
if p['score'] >= conf_threshold]
|
134 |
+
|
135 |
+
for pred in predictions_watcher:
|
136 |
+
if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
|
137 |
+
has_fracture = True
|
138 |
+
max_fracture_score = max(max_fracture_score, pred['score'])
|
139 |
+
|
140 |
+
with results_container:
|
141 |
+
st.write("### 🔍 Analyse Ergebnisse")
|
142 |
+
col1, col2 = st.columns(2)
|
143 |
+
|
144 |
+
with col1:
|
145 |
+
st.write("#### 🤖 KI-Diagnose")
|
146 |
|
147 |
+
st.markdown("#### 🛡️ KnochenWächter")
|
148 |
for pred in predictions_watcher:
|
149 |
+
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
|
150 |
+
label_lower = pred['label'].lower()
|
151 |
+
if pred['score'] >= conf_threshold and 'fracture' in label_lower:
|
152 |
has_fracture = True
|
153 |
max_fracture_score = max(max_fracture_score, pred['score'])
|
154 |
+
st.markdown(f"""
|
155 |
+
<div class="result-box">
|
156 |
+
<span style="color: {confidence_color}; font-weight: 500;">
|
157 |
+
{pred['score']:.1%}
|
158 |
+
</span> - {translate_label(pred['label'])}
|
159 |
+
</div>
|
160 |
+
""", unsafe_allow_html=True)
|
161 |
+
|
162 |
+
st.markdown("#### 🎓 RöntgenMeister")
|
163 |
+
for pred in predictions_master:
|
164 |
+
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
|
165 |
+
st.markdown(f"""
|
166 |
+
<div class="result-box">
|
167 |
+
<span style="color: {confidence_color}; font-weight: 500;">
|
168 |
+
{pred['score']:.1%}
|
169 |
+
</span> - {translate_label(pred['label'])}
|
170 |
+
</div>
|
171 |
+
""", unsafe_allow_html=True)
|
172 |
+
|
173 |
+
if max_fracture_score > 0:
|
174 |
+
st.write("#### 📊 Wahrscheinlichkeit")
|
175 |
+
no_fracture_prob = 1 - max_fracture_score
|
176 |
+
st.markdown(f"""
|
177 |
+
<div class="result-box">
|
178 |
+
Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
|
179 |
+
Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
|
180 |
+
</div>
|
181 |
+
""", unsafe_allow_html=True)
|
182 |
+
|
183 |
+
with col2:
|
184 |
+
predictions = models["KnochenAuge"](image)
|
185 |
+
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
|
186 |
|
187 |
+
if filtered_preds:
|
188 |
+
st.write("#### 🎯 Fraktur Lokalisation")
|
189 |
+
result_image = draw_boxes(image, filtered_preds)
|
190 |
+
st.image(result_image, use_container_width=True)
|
191 |
+
else:
|
192 |
+
st.write("#### 🖼️ Röntgenbild")
|
193 |
+
st.image(image, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
except Exception as e:
|
195 |
st.error(f"Ein Fehler ist aufgetreten: {str(e)}")
|
196 |
|
197 |
if __name__ == "__main__":
|
|
|
198 |
main()
|