Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
-
from fastapi import FastAPI, File, UploadFile, Form
|
3 |
-
from fastapi.middleware.cors import CORSMiddleware
|
4 |
-
from starlette.responses import JSONResponse
|
5 |
from transformers import pipeline
|
6 |
import torch
|
7 |
from PIL import Image, ImageDraw
|
8 |
import io
|
9 |
import base64
|
|
|
|
|
10 |
import numpy as np
|
11 |
import json
|
12 |
-
import
|
13 |
-
|
14 |
-
# Configure logging
|
15 |
-
logging.basicConfig(level=logging.INFO)
|
16 |
-
logger = logging.getLogger(__name__)
|
17 |
|
18 |
# FastAPI app
|
19 |
-
app = FastAPI(
|
20 |
-
title="Fracture Detection API",
|
21 |
-
description="API for detecting fractures in X-ray images using multiple ML models",
|
22 |
-
version="1.0.0"
|
23 |
-
)
|
24 |
|
25 |
# Enable CORS
|
26 |
app.add_middleware(
|
@@ -29,46 +20,21 @@ app.add_middleware(
|
|
29 |
allow_credentials=True,
|
30 |
allow_methods=["*"],
|
31 |
allow_headers=["*"],
|
32 |
-
expose_headers=["*"]
|
33 |
)
|
34 |
|
35 |
-
# Load models
|
36 |
@st.cache_resource
|
37 |
def load_models():
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
"image-classification",
|
45 |
-
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388"
|
46 |
-
)
|
47 |
-
}
|
48 |
-
except Exception as e:
|
49 |
-
logger.error(f"Error loading models: {str(e)}")
|
50 |
-
raise
|
51 |
|
52 |
-
|
53 |
-
try:
|
54 |
-
models = load_models()
|
55 |
-
logger.info("Models loaded successfully")
|
56 |
-
except Exception as e:
|
57 |
-
logger.error(f"Failed to load models: {str(e)}")
|
58 |
-
models = None
|
59 |
|
60 |
def draw_boxes(image, predictions, threshold=0.6):
|
61 |
-
"""
|
62 |
-
Draw bounding boxes and labels on the image for detected fractures.
|
63 |
-
|
64 |
-
Args:
|
65 |
-
image (PIL.Image): Input image
|
66 |
-
predictions (list): List of predictions from the model
|
67 |
-
threshold (float): Confidence threshold for filtering predictions
|
68 |
-
|
69 |
-
Returns:
|
70 |
-
tuple: (annotated image, filtered predictions)
|
71 |
-
"""
|
72 |
draw = ImageDraw.Draw(image)
|
73 |
filtered_preds = [p for p in predictions if p['score'] >= threshold]
|
74 |
|
@@ -76,202 +42,68 @@ def draw_boxes(image, predictions, threshold=0.6):
|
|
76 |
box = pred['box']
|
77 |
label = f"{pred['label']} ({pred['score']:.2%})"
|
78 |
|
79 |
-
# Draw bounding box
|
80 |
draw.rectangle(
|
81 |
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
82 |
outline="red",
|
83 |
width=2
|
84 |
)
|
85 |
|
86 |
-
|
87 |
-
draw.text(
|
88 |
-
(box['xmin'], box['ymin'] - 10),
|
89 |
-
label,
|
90 |
-
fill="red"
|
91 |
-
)
|
92 |
|
93 |
return image, filtered_preds
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
Args:
|
100 |
-
image (PIL.Image): Input image
|
101 |
-
confidence_threshold (float): Confidence threshold for filtering predictions
|
102 |
-
|
103 |
-
Returns:
|
104 |
-
dict: Combined results from all models
|
105 |
-
"""
|
106 |
try:
|
107 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
detection_preds = models["D3STRON"](image)
|
109 |
result_image = image.copy()
|
110 |
-
result_image, filtered_detections = draw_boxes(
|
111 |
-
result_image,
|
112 |
-
detection_preds,
|
113 |
-
confidence_threshold
|
114 |
-
)
|
115 |
|
116 |
-
# Save
|
117 |
img_byte_arr = io.BytesIO()
|
118 |
result_image.save(img_byte_arr, format='PNG')
|
119 |
img_byte_arr = img_byte_arr.getvalue()
|
120 |
img_b64 = base64.b64encode(img_byte_arr).decode()
|
121 |
|
122 |
-
# Classification
|
123 |
-
class_results = {
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
heem2_result = models["Heem2"](image)
|
128 |
-
class_results["Heem2"] = heem2_result
|
129 |
-
except Exception as e:
|
130 |
-
logger.error(f"Error in Heem2 model: {str(e)}")
|
131 |
-
class_results["Heem2"] = {"error": str(e)}
|
132 |
-
|
133 |
-
# Nandodeomkar model
|
134 |
-
try:
|
135 |
-
nando_result = models["Nandodeomkar"](image)
|
136 |
-
class_results["Nandodeomkar"] = nando_result
|
137 |
-
except Exception as e:
|
138 |
-
logger.error(f"Error in Nandodeomkar model: {str(e)}")
|
139 |
-
class_results["Nandodeomkar"] = {"error": str(e)}
|
140 |
|
141 |
-
return {
|
142 |
"success": True,
|
143 |
"detections": filtered_detections,
|
144 |
"classifications": class_results,
|
145 |
"image": img_b64
|
146 |
-
}
|
147 |
-
|
148 |
-
except Exception as e:
|
149 |
-
logger.error(f"Error processing image: {str(e)}")
|
150 |
-
raise
|
151 |
-
|
152 |
-
# API Endpoints
|
153 |
-
@app.post("/detect")
|
154 |
-
@app.post("/api/predict")
|
155 |
-
async def detect_fracture(
|
156 |
-
file: UploadFile = File(...),
|
157 |
-
confidence: float = Form(default=0.6)
|
158 |
-
):
|
159 |
-
"""
|
160 |
-
Endpoint for fracture detection in X-ray images.
|
161 |
-
|
162 |
-
Args:
|
163 |
-
file (UploadFile): Uploaded image file
|
164 |
-
confidence (float): Confidence threshold for predictions
|
165 |
-
|
166 |
-
Returns:
|
167 |
-
JSONResponse: Detection results including annotated image
|
168 |
-
"""
|
169 |
-
logger.info(f"Received request with confidence threshold: {confidence}")
|
170 |
-
|
171 |
-
try:
|
172 |
-
# Validate confidence threshold
|
173 |
-
if not 0 <= confidence <= 1:
|
174 |
-
return JSONResponse(
|
175 |
-
status_code=400,
|
176 |
-
content={
|
177 |
-
"success": False,
|
178 |
-
"error": "Confidence threshold must be between 0 and 1"
|
179 |
-
}
|
180 |
-
)
|
181 |
|
182 |
-
# Read and validate image
|
183 |
-
contents = await file.read()
|
184 |
-
try:
|
185 |
-
image = Image.open(io.BytesIO(contents))
|
186 |
-
except Exception as e:
|
187 |
-
return JSONResponse(
|
188 |
-
status_code=400,
|
189 |
-
content={
|
190 |
-
"success": False,
|
191 |
-
"error": f"Invalid image file: {str(e)}"
|
192 |
-
}
|
193 |
-
)
|
194 |
-
|
195 |
-
# Process image
|
196 |
-
try:
|
197 |
-
results = process_image(image, confidence)
|
198 |
-
logger.info("Image processed successfully")
|
199 |
-
return JSONResponse(content=results)
|
200 |
-
|
201 |
-
except Exception as e:
|
202 |
-
logger.error(f"Error processing image: {str(e)}")
|
203 |
-
return JSONResponse(
|
204 |
-
status_code=500,
|
205 |
-
content={
|
206 |
-
"success": False,
|
207 |
-
"error": f"Error processing image: {str(e)}"
|
208 |
-
}
|
209 |
-
)
|
210 |
-
|
211 |
except Exception as e:
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
"success": False,
|
217 |
-
"error": f"Unexpected error: {str(e)}"
|
218 |
-
}
|
219 |
-
)
|
220 |
|
221 |
# Streamlit UI
|
222 |
def main():
|
223 |
-
st.title("🦴
|
224 |
-
st.write("Upload an X-ray image to detect potential fractures")
|
225 |
|
226 |
-
#
|
227 |
-
uploaded_file = st.file_uploader(
|
228 |
-
|
229 |
-
type=['png', 'jpg', 'jpeg']
|
230 |
-
)
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
min_value=0.0,
|
236 |
-
max_value=1.0,
|
237 |
-
value=0.6,
|
238 |
-
step=0.05
|
239 |
-
)
|
240 |
-
|
241 |
-
if uploaded_file is not None:
|
242 |
-
# Display original image
|
243 |
-
image = Image.open(uploaded_file)
|
244 |
-
st.image(image, caption="Original Image", use_column_width=True)
|
245 |
-
|
246 |
-
if st.button("Analyze Image"):
|
247 |
-
try:
|
248 |
-
# Process image
|
249 |
-
results = process_image(image, confidence)
|
250 |
-
|
251 |
-
if results["success"]:
|
252 |
-
# Display results
|
253 |
-
st.success("Analysis completed successfully!")
|
254 |
-
|
255 |
-
# Show annotated image
|
256 |
-
annotated_image = Image.open(io.BytesIO(base64.b64decode(results["image"])))
|
257 |
-
st.image(annotated_image, caption="Detected Fractures", use_column_width=True)
|
258 |
-
|
259 |
-
# Show detections
|
260 |
-
if results["detections"]:
|
261 |
-
st.subheader("Detected Fractures")
|
262 |
-
for det in results["detections"]:
|
263 |
-
st.write(f"- {det['label']}: {det['score']:.2%} confidence")
|
264 |
-
|
265 |
-
# Show classifications
|
266 |
-
st.subheader("Classification Results")
|
267 |
-
for model, preds in results["classifications"].items():
|
268 |
-
st.write(f"**{model} Model:**")
|
269 |
-
st.json(preds)
|
270 |
-
else:
|
271 |
-
st.error("Analysis failed. Please try again.")
|
272 |
-
|
273 |
-
except Exception as e:
|
274 |
-
st.error(f"Error during analysis: {str(e)}")
|
275 |
|
276 |
if __name__ == "__main__":
|
277 |
main()
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
from PIL import Image, ImageDraw
|
5 |
import io
|
6 |
import base64
|
7 |
+
from fastapi import FastAPI, File, UploadFile
|
8 |
+
from fastapi.middleware.cors import CORSMiddleware
|
9 |
import numpy as np
|
10 |
import json
|
11 |
+
from starlette.responses import JSONResponse
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# FastAPI app
|
14 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Enable CORS
|
17 |
app.add_middleware(
|
|
|
20 |
allow_credentials=True,
|
21 |
allow_methods=["*"],
|
22 |
allow_headers=["*"],
|
|
|
23 |
)
|
24 |
|
25 |
+
# Load models
|
26 |
@st.cache_resource
|
27 |
def load_models():
|
28 |
+
return {
|
29 |
+
"D3STRON": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
|
30 |
+
"Heem2": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
|
31 |
+
"Nandodeomkar": pipeline("image-classification",
|
32 |
+
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
33 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
models = load_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def draw_boxes(image, predictions, threshold=0.6):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
draw = ImageDraw.Draw(image)
|
39 |
filtered_preds = [p for p in predictions if p['score'] >= threshold]
|
40 |
|
|
|
42 |
box = pred['box']
|
43 |
label = f"{pred['label']} ({pred['score']:.2%})"
|
44 |
|
|
|
45 |
draw.rectangle(
|
46 |
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
47 |
outline="red",
|
48 |
width=2
|
49 |
)
|
50 |
|
51 |
+
draw.text((box['xmin'], box['ymin']), label, fill="red")
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
return image, filtered_preds
|
54 |
|
55 |
+
# API Endpoint
|
56 |
+
@app.post("/detect")
|
57 |
+
async def detect_fracture(file: UploadFile = File(...), confidence: float = 0.6):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
try:
|
59 |
+
# Read and process image
|
60 |
+
contents = await file.read()
|
61 |
+
image = Image.open(io.BytesIO(contents))
|
62 |
+
|
63 |
+
# Get predictions from all models
|
64 |
+
results = {}
|
65 |
+
|
66 |
+
# Object detection models
|
67 |
detection_preds = models["D3STRON"](image)
|
68 |
result_image = image.copy()
|
69 |
+
result_image, filtered_detections = draw_boxes(result_image, detection_preds, confidence)
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# Save result image
|
72 |
img_byte_arr = io.BytesIO()
|
73 |
result_image.save(img_byte_arr, format='PNG')
|
74 |
img_byte_arr = img_byte_arr.getvalue()
|
75 |
img_b64 = base64.b64encode(img_byte_arr).decode()
|
76 |
|
77 |
+
# Classification models
|
78 |
+
class_results = {
|
79 |
+
"Heem2": models["Heem2"](image),
|
80 |
+
"Nandodeomkar": models["Nandodeomkar"](image)
|
81 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
return JSONResponse({
|
84 |
"success": True,
|
85 |
"detections": filtered_detections,
|
86 |
"classifications": class_results,
|
87 |
"image": img_b64
|
88 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
except Exception as e:
|
91 |
+
return JSONResponse({
|
92 |
+
"success": False,
|
93 |
+
"error": str(e)
|
94 |
+
})
|
|
|
|
|
|
|
|
|
95 |
|
96 |
# Streamlit UI
|
97 |
def main():
|
98 |
+
st.title("🦴 Fraktur Detektion")
|
|
|
99 |
|
100 |
+
# UI elements...
|
101 |
+
uploaded_file = st.file_uploader("Röntgenbild hochladen", type=['png', 'jpg', 'jpeg'])
|
102 |
+
confidence = st.slider("Konfidenzschwelle", 0.0, 1.0, 0.6, 0.05)
|
|
|
|
|
103 |
|
104 |
+
if uploaded_file:
|
105 |
+
# Process image and display results...
|
106 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
main()
|