yassonee commited on
Commit
af17427
·
verified ·
1 Parent(s): d043ddf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -212
app.py CHANGED
@@ -1,26 +1,17 @@
1
  import streamlit as st
2
- from fastapi import FastAPI, File, UploadFile, Form
3
- from fastapi.middleware.cors import CORSMiddleware
4
- from starlette.responses import JSONResponse
5
  from transformers import pipeline
6
  import torch
7
  from PIL import Image, ImageDraw
8
  import io
9
  import base64
 
 
10
  import numpy as np
11
  import json
12
- import logging
13
-
14
- # Configure logging
15
- logging.basicConfig(level=logging.INFO)
16
- logger = logging.getLogger(__name__)
17
 
18
  # FastAPI app
19
- app = FastAPI(
20
- title="Fracture Detection API",
21
- description="API for detecting fractures in X-ray images using multiple ML models",
22
- version="1.0.0"
23
- )
24
 
25
  # Enable CORS
26
  app.add_middleware(
@@ -29,46 +20,21 @@ app.add_middleware(
29
  allow_credentials=True,
30
  allow_methods=["*"],
31
  allow_headers=["*"],
32
- expose_headers=["*"]
33
  )
34
 
35
- # Load models with caching
36
  @st.cache_resource
37
  def load_models():
38
- logger.info("Loading ML models...")
39
- try:
40
- return {
41
- "D3STRON": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
42
- "Heem2": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
43
- "Nandodeomkar": pipeline(
44
- "image-classification",
45
- model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388"
46
- )
47
- }
48
- except Exception as e:
49
- logger.error(f"Error loading models: {str(e)}")
50
- raise
51
 
52
- # Initialize models
53
- try:
54
- models = load_models()
55
- logger.info("Models loaded successfully")
56
- except Exception as e:
57
- logger.error(f"Failed to load models: {str(e)}")
58
- models = None
59
 
60
  def draw_boxes(image, predictions, threshold=0.6):
61
- """
62
- Draw bounding boxes and labels on the image for detected fractures.
63
-
64
- Args:
65
- image (PIL.Image): Input image
66
- predictions (list): List of predictions from the model
67
- threshold (float): Confidence threshold for filtering predictions
68
-
69
- Returns:
70
- tuple: (annotated image, filtered predictions)
71
- """
72
  draw = ImageDraw.Draw(image)
73
  filtered_preds = [p for p in predictions if p['score'] >= threshold]
74
 
@@ -76,202 +42,68 @@ def draw_boxes(image, predictions, threshold=0.6):
76
  box = pred['box']
77
  label = f"{pred['label']} ({pred['score']:.2%})"
78
 
79
- # Draw bounding box
80
  draw.rectangle(
81
  [(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
82
  outline="red",
83
  width=2
84
  )
85
 
86
- # Draw label
87
- draw.text(
88
- (box['xmin'], box['ymin'] - 10),
89
- label,
90
- fill="red"
91
- )
92
 
93
  return image, filtered_preds
94
 
95
- def process_image(image, confidence_threshold):
96
- """
97
- Process an image through all models and return combined results.
98
-
99
- Args:
100
- image (PIL.Image): Input image
101
- confidence_threshold (float): Confidence threshold for filtering predictions
102
-
103
- Returns:
104
- dict: Combined results from all models
105
- """
106
  try:
107
- # Object detection
 
 
 
 
 
 
 
108
  detection_preds = models["D3STRON"](image)
109
  result_image = image.copy()
110
- result_image, filtered_detections = draw_boxes(
111
- result_image,
112
- detection_preds,
113
- confidence_threshold
114
- )
115
 
116
- # Save annotated image
117
  img_byte_arr = io.BytesIO()
118
  result_image.save(img_byte_arr, format='PNG')
119
  img_byte_arr = img_byte_arr.getvalue()
120
  img_b64 = base64.b64encode(img_byte_arr).decode()
121
 
122
- # Classification results
123
- class_results = {}
124
-
125
- # Heem2 model
126
- try:
127
- heem2_result = models["Heem2"](image)
128
- class_results["Heem2"] = heem2_result
129
- except Exception as e:
130
- logger.error(f"Error in Heem2 model: {str(e)}")
131
- class_results["Heem2"] = {"error": str(e)}
132
-
133
- # Nandodeomkar model
134
- try:
135
- nando_result = models["Nandodeomkar"](image)
136
- class_results["Nandodeomkar"] = nando_result
137
- except Exception as e:
138
- logger.error(f"Error in Nandodeomkar model: {str(e)}")
139
- class_results["Nandodeomkar"] = {"error": str(e)}
140
 
141
- return {
142
  "success": True,
143
  "detections": filtered_detections,
144
  "classifications": class_results,
145
  "image": img_b64
146
- }
147
-
148
- except Exception as e:
149
- logger.error(f"Error processing image: {str(e)}")
150
- raise
151
-
152
- # API Endpoints
153
- @app.post("/detect")
154
- @app.post("/api/predict")
155
- async def detect_fracture(
156
- file: UploadFile = File(...),
157
- confidence: float = Form(default=0.6)
158
- ):
159
- """
160
- Endpoint for fracture detection in X-ray images.
161
-
162
- Args:
163
- file (UploadFile): Uploaded image file
164
- confidence (float): Confidence threshold for predictions
165
-
166
- Returns:
167
- JSONResponse: Detection results including annotated image
168
- """
169
- logger.info(f"Received request with confidence threshold: {confidence}")
170
-
171
- try:
172
- # Validate confidence threshold
173
- if not 0 <= confidence <= 1:
174
- return JSONResponse(
175
- status_code=400,
176
- content={
177
- "success": False,
178
- "error": "Confidence threshold must be between 0 and 1"
179
- }
180
- )
181
 
182
- # Read and validate image
183
- contents = await file.read()
184
- try:
185
- image = Image.open(io.BytesIO(contents))
186
- except Exception as e:
187
- return JSONResponse(
188
- status_code=400,
189
- content={
190
- "success": False,
191
- "error": f"Invalid image file: {str(e)}"
192
- }
193
- )
194
-
195
- # Process image
196
- try:
197
- results = process_image(image, confidence)
198
- logger.info("Image processed successfully")
199
- return JSONResponse(content=results)
200
-
201
- except Exception as e:
202
- logger.error(f"Error processing image: {str(e)}")
203
- return JSONResponse(
204
- status_code=500,
205
- content={
206
- "success": False,
207
- "error": f"Error processing image: {str(e)}"
208
- }
209
- )
210
-
211
  except Exception as e:
212
- logger.error(f"Unexpected error: {str(e)}")
213
- return JSONResponse(
214
- status_code=500,
215
- content={
216
- "success": False,
217
- "error": f"Unexpected error: {str(e)}"
218
- }
219
- )
220
 
221
  # Streamlit UI
222
  def main():
223
- st.title("🦴 Fracture Detection System")
224
- st.write("Upload an X-ray image to detect potential fractures")
225
 
226
- # File uploader
227
- uploaded_file = st.file_uploader(
228
- "Upload X-ray image",
229
- type=['png', 'jpg', 'jpeg']
230
- )
231
 
232
- # Confidence threshold slider
233
- confidence = st.slider(
234
- "Confidence Threshold",
235
- min_value=0.0,
236
- max_value=1.0,
237
- value=0.6,
238
- step=0.05
239
- )
240
-
241
- if uploaded_file is not None:
242
- # Display original image
243
- image = Image.open(uploaded_file)
244
- st.image(image, caption="Original Image", use_column_width=True)
245
-
246
- if st.button("Analyze Image"):
247
- try:
248
- # Process image
249
- results = process_image(image, confidence)
250
-
251
- if results["success"]:
252
- # Display results
253
- st.success("Analysis completed successfully!")
254
-
255
- # Show annotated image
256
- annotated_image = Image.open(io.BytesIO(base64.b64decode(results["image"])))
257
- st.image(annotated_image, caption="Detected Fractures", use_column_width=True)
258
-
259
- # Show detections
260
- if results["detections"]:
261
- st.subheader("Detected Fractures")
262
- for det in results["detections"]:
263
- st.write(f"- {det['label']}: {det['score']:.2%} confidence")
264
-
265
- # Show classifications
266
- st.subheader("Classification Results")
267
- for model, preds in results["classifications"].items():
268
- st.write(f"**{model} Model:**")
269
- st.json(preds)
270
- else:
271
- st.error("Analysis failed. Please try again.")
272
-
273
- except Exception as e:
274
- st.error(f"Error during analysis: {str(e)}")
275
 
276
  if __name__ == "__main__":
277
  main()
 
1
  import streamlit as st
 
 
 
2
  from transformers import pipeline
3
  import torch
4
  from PIL import Image, ImageDraw
5
  import io
6
  import base64
7
+ from fastapi import FastAPI, File, UploadFile
8
+ from fastapi.middleware.cors import CORSMiddleware
9
  import numpy as np
10
  import json
11
+ from starlette.responses import JSONResponse
 
 
 
 
12
 
13
  # FastAPI app
14
+ app = FastAPI()
 
 
 
 
15
 
16
  # Enable CORS
17
  app.add_middleware(
 
20
  allow_credentials=True,
21
  allow_methods=["*"],
22
  allow_headers=["*"],
 
23
  )
24
 
25
+ # Load models
26
  @st.cache_resource
27
  def load_models():
28
+ return {
29
+ "D3STRON": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
30
+ "Heem2": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
31
+ "Nandodeomkar": pipeline("image-classification",
32
+ model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
33
+ }
 
 
 
 
 
 
 
34
 
35
+ models = load_models()
 
 
 
 
 
 
36
 
37
  def draw_boxes(image, predictions, threshold=0.6):
 
 
 
 
 
 
 
 
 
 
 
38
  draw = ImageDraw.Draw(image)
39
  filtered_preds = [p for p in predictions if p['score'] >= threshold]
40
 
 
42
  box = pred['box']
43
  label = f"{pred['label']} ({pred['score']:.2%})"
44
 
 
45
  draw.rectangle(
46
  [(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
47
  outline="red",
48
  width=2
49
  )
50
 
51
+ draw.text((box['xmin'], box['ymin']), label, fill="red")
 
 
 
 
 
52
 
53
  return image, filtered_preds
54
 
55
+ # API Endpoint
56
+ @app.post("/detect")
57
+ async def detect_fracture(file: UploadFile = File(...), confidence: float = 0.6):
 
 
 
 
 
 
 
 
58
  try:
59
+ # Read and process image
60
+ contents = await file.read()
61
+ image = Image.open(io.BytesIO(contents))
62
+
63
+ # Get predictions from all models
64
+ results = {}
65
+
66
+ # Object detection models
67
  detection_preds = models["D3STRON"](image)
68
  result_image = image.copy()
69
+ result_image, filtered_detections = draw_boxes(result_image, detection_preds, confidence)
 
 
 
 
70
 
71
+ # Save result image
72
  img_byte_arr = io.BytesIO()
73
  result_image.save(img_byte_arr, format='PNG')
74
  img_byte_arr = img_byte_arr.getvalue()
75
  img_b64 = base64.b64encode(img_byte_arr).decode()
76
 
77
+ # Classification models
78
+ class_results = {
79
+ "Heem2": models["Heem2"](image),
80
+ "Nandodeomkar": models["Nandodeomkar"](image)
81
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
+ return JSONResponse({
84
  "success": True,
85
  "detections": filtered_detections,
86
  "classifications": class_results,
87
  "image": img_b64
88
+ })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  except Exception as e:
91
+ return JSONResponse({
92
+ "success": False,
93
+ "error": str(e)
94
+ })
 
 
 
 
95
 
96
  # Streamlit UI
97
  def main():
98
+ st.title("🦴 Fraktur Detektion")
 
99
 
100
+ # UI elements...
101
+ uploaded_file = st.file_uploader("Röntgenbild hochladen", type=['png', 'jpg', 'jpeg'])
102
+ confidence = st.slider("Konfidenzschwelle", 0.0, 1.0, 0.6, 0.05)
 
 
103
 
104
+ if uploaded_file:
105
+ # Process image and display results...
106
+ pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
  if __name__ == "__main__":
109
  main()