Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,62 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoImageProcessor,
|
3 |
from PIL import Image
|
4 |
import torch
|
|
|
5 |
|
6 |
-
st.set_page_config(page_title="
|
7 |
|
8 |
@st.cache_resource
|
9 |
def load_model():
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def main():
|
13 |
-
st.title("
|
14 |
|
15 |
-
model = load_model()
|
16 |
|
17 |
uploaded_file = st.file_uploader("Télécharger une radiographie thoracique", type=["jpg", "jpeg", "png"])
|
18 |
|
19 |
if uploaded_file:
|
20 |
image = Image.open(uploaded_file)
|
21 |
-
st.image(image, caption="
|
22 |
|
23 |
if st.button("Analyser"):
|
24 |
with st.spinner("Analyse en cours..."):
|
25 |
try:
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
except Exception as e:
|
30 |
st.error(f"Erreur: {str(e)}")
|
31 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoImageProcessor, SegformerForSemanticSegmentation
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
+
import numpy as np
|
6 |
|
7 |
+
st.set_page_config(page_title="Segmentation pulmonaire", layout="wide")
|
8 |
|
9 |
@st.cache_resource
|
10 |
def load_model():
|
11 |
+
processor = AutoImageProcessor.from_pretrained("Tianmu28/segformer-b0-segments-lungs-xray")
|
12 |
+
model = SegformerForSemanticSegmentation.from_pretrained("Tianmu28/segformer-b0-segments-lungs-xray")
|
13 |
+
return processor, model
|
14 |
+
|
15 |
+
def create_overlay(image, mask, alpha=0.5):
|
16 |
+
# Convertir le masque en RGB
|
17 |
+
mask_rgb = np.zeros((*mask.shape, 3), dtype=np.uint8)
|
18 |
+
mask_rgb[mask == 1] = [255, 0, 0] # Rouge pour les zones détectées
|
19 |
+
|
20 |
+
# Convertir l'image en array numpy
|
21 |
+
image_np = np.array(image)
|
22 |
+
if len(image_np.shape) == 2: # Si l'image est en niveaux de gris
|
23 |
+
image_np = np.stack([image_np] * 3, axis=-1)
|
24 |
+
|
25 |
+
# Redimensionner le masque si nécessaire
|
26 |
+
if mask_rgb.shape[:2] != image_np.shape[:2]:
|
27 |
+
mask_rgb = Image.fromarray(mask_rgb).resize(image.size)
|
28 |
+
mask_rgb = np.array(mask_rgb)
|
29 |
+
|
30 |
+
# Créer l'overlay
|
31 |
+
overlay = Image.fromarray((image_np * (1 - alpha) + mask_rgb * alpha).astype(np.uint8))
|
32 |
+
return overlay
|
33 |
|
34 |
def main():
|
35 |
+
st.title("Segmentation des poumons sur radiographie")
|
36 |
|
37 |
+
processor, model = load_model()
|
38 |
|
39 |
uploaded_file = st.file_uploader("Télécharger une radiographie thoracique", type=["jpg", "jpeg", "png"])
|
40 |
|
41 |
if uploaded_file:
|
42 |
image = Image.open(uploaded_file)
|
43 |
+
st.image(image, caption="Image originale", use_column_width=True)
|
44 |
|
45 |
if st.button("Analyser"):
|
46 |
with st.spinner("Analyse en cours..."):
|
47 |
try:
|
48 |
+
# Préparer l'image
|
49 |
+
inputs = processor(images=image, return_tensors="pt")
|
50 |
+
|
51 |
+
# Prédiction
|
52 |
+
outputs = model(**inputs)
|
53 |
+
logits = outputs.logits
|
54 |
+
predicted_mask = torch.argmax(logits, dim=1).squeeze().numpy()
|
55 |
+
|
56 |
+
# Créer et afficher l'overlay
|
57 |
+
overlay = create_overlay(image, predicted_mask)
|
58 |
+
st.image(overlay, caption="Zones détectées", use_column_width=True)
|
59 |
+
|
60 |
except Exception as e:
|
61 |
st.error(f"Erreur: {str(e)}")
|
62 |
|