Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- Codenames AI Assistant .ipynb +314 -0
- NOte.txt +35 -0
- README.md +42 -20
- app.py +55 -0
- config.json +14 -0
- model.txt +3 -0
- sample_input.json +0 -0
Codenames AI Assistant .ipynb
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "9b7d6163-bb7b-44f9-8ca2-fb20e588efac",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Collecting gensim\n",
|
14 |
+
" Using cached gensim-4.3.3-cp312-cp312-win_amd64.whl.metadata (8.2 kB)\n",
|
15 |
+
"Requirement already satisfied: numpy in c:\\programdata\\anaconda3\\lib\\site-packages (2.1.3)\n",
|
16 |
+
"Collecting numpy\n",
|
17 |
+
" Using cached numpy-1.26.4-cp312-cp312-win_amd64.whl.metadata (61 kB)\n",
|
18 |
+
"Collecting scipy<1.14.0,>=1.7.0 (from gensim)\n",
|
19 |
+
" Using cached scipy-1.13.1-cp312-cp312-win_amd64.whl.metadata (60 kB)\n",
|
20 |
+
"Collecting smart-open>=1.8.1 (from gensim)\n",
|
21 |
+
" Using cached smart_open-7.1.0-py3-none-any.whl.metadata (24 kB)\n",
|
22 |
+
"Requirement already satisfied: wrapt in c:\\programdata\\anaconda3\\lib\\site-packages (from smart-open>=1.8.1->gensim) (1.17.0)\n",
|
23 |
+
"Using cached gensim-4.3.3-cp312-cp312-win_amd64.whl (24.0 MB)\n",
|
24 |
+
"Using cached numpy-1.26.4-cp312-cp312-win_amd64.whl (15.5 MB)\n",
|
25 |
+
"Downloading scipy-1.13.1-cp312-cp312-win_amd64.whl (45.9 MB)\n",
|
26 |
+
" ---------------------------------------- 0.0/45.9 MB ? eta -:--:--\n",
|
27 |
+
" ---------------------------------------- 0.0/45.9 MB ? eta -:--:--\n",
|
28 |
+
" ---------------------------------------- 0.5/45.9 MB 3.4 MB/s eta 0:00:14\n",
|
29 |
+
" --------------------------------------- 0.8/45.9 MB 2.0 MB/s eta 0:00:23\n",
|
30 |
+
" - -------------------------------------- 1.3/45.9 MB 2.3 MB/s eta 0:00:20\n",
|
31 |
+
" - -------------------------------------- 1.8/45.9 MB 2.3 MB/s eta 0:00:20\n",
|
32 |
+
" -- ------------------------------------- 2.4/45.9 MB 2.2 MB/s eta 0:00:20\n",
|
33 |
+
" -- ------------------------------------- 2.6/45.9 MB 2.3 MB/s eta 0:00:20\n",
|
34 |
+
" -- ------------------------------------- 3.1/45.9 MB 2.2 MB/s eta 0:00:20\n",
|
35 |
+
" --- ------------------------------------ 3.7/45.9 MB 2.2 MB/s eta 0:00:19\n",
|
36 |
+
" --- ------------------------------------ 4.2/45.9 MB 2.2 MB/s eta 0:00:19\n",
|
37 |
+
" --- ------------------------------------ 4.5/45.9 MB 2.2 MB/s eta 0:00:19\n",
|
38 |
+
" ---- ----------------------------------- 5.0/45.9 MB 2.2 MB/s eta 0:00:19\n",
|
39 |
+
" ---- ----------------------------------- 5.5/45.9 MB 2.2 MB/s eta 0:00:19\n",
|
40 |
+
" ----- ---------------------------------- 5.8/45.9 MB 2.2 MB/s eta 0:00:19\n",
|
41 |
+
" ----- ---------------------------------- 6.3/45.9 MB 2.2 MB/s eta 0:00:18\n",
|
42 |
+
" ----- ---------------------------------- 6.8/45.9 MB 2.2 MB/s eta 0:00:18\n",
|
43 |
+
" ------ --------------------------------- 7.3/45.9 MB 2.2 MB/s eta 0:00:18\n",
|
44 |
+
" ------ --------------------------------- 7.6/45.9 MB 2.2 MB/s eta 0:00:18\n",
|
45 |
+
" ------- -------------------------------- 8.1/45.9 MB 2.2 MB/s eta 0:00:18\n",
|
46 |
+
" ------- -------------------------------- 8.7/45.9 MB 2.2 MB/s eta 0:00:17\n",
|
47 |
+
" ------- -------------------------------- 9.2/45.9 MB 2.2 MB/s eta 0:00:17\n",
|
48 |
+
" -------- ------------------------------- 9.4/45.9 MB 2.2 MB/s eta 0:00:17\n",
|
49 |
+
" -------- ------------------------------- 10.0/45.9 MB 2.2 MB/s eta 0:00:17\n",
|
50 |
+
" --------- ------------------------------ 10.5/45.9 MB 2.2 MB/s eta 0:00:17\n",
|
51 |
+
" --------- ------------------------------ 10.7/45.9 MB 2.2 MB/s eta 0:00:16\n",
|
52 |
+
" --------- ------------------------------ 11.3/45.9 MB 2.2 MB/s eta 0:00:16\n",
|
53 |
+
" ---------- ----------------------------- 11.8/45.9 MB 2.2 MB/s eta 0:00:16\n",
|
54 |
+
" ---------- ----------------------------- 12.3/45.9 MB 2.2 MB/s eta 0:00:16\n",
|
55 |
+
" ---------- ----------------------------- 12.6/45.9 MB 2.2 MB/s eta 0:00:16\n",
|
56 |
+
" ----------- ---------------------------- 13.1/45.9 MB 2.1 MB/s eta 0:00:16\n",
|
57 |
+
" ----------- ---------------------------- 13.4/45.9 MB 2.2 MB/s eta 0:00:16\n",
|
58 |
+
" ------------ --------------------------- 13.9/45.9 MB 2.1 MB/s eta 0:00:15\n",
|
59 |
+
" ------------ --------------------------- 14.4/45.9 MB 2.2 MB/s eta 0:00:15\n",
|
60 |
+
" ------------ --------------------------- 14.7/45.9 MB 2.2 MB/s eta 0:00:15\n",
|
61 |
+
" ------------- -------------------------- 15.2/45.9 MB 2.2 MB/s eta 0:00:15\n",
|
62 |
+
" ------------- -------------------------- 15.7/45.9 MB 2.2 MB/s eta 0:00:14\n",
|
63 |
+
" ------------- -------------------------- 16.0/45.9 MB 2.2 MB/s eta 0:00:14\n",
|
64 |
+
" -------------- ------------------------- 16.5/45.9 MB 2.2 MB/s eta 0:00:14\n",
|
65 |
+
" -------------- ------------------------- 17.0/45.9 MB 2.2 MB/s eta 0:00:14\n",
|
66 |
+
" --------------- ------------------------ 17.3/45.9 MB 2.2 MB/s eta 0:00:14\n",
|
67 |
+
" --------------- ------------------------ 17.8/45.9 MB 2.2 MB/s eta 0:00:14\n",
|
68 |
+
" --------------- ------------------------ 18.4/45.9 MB 2.2 MB/s eta 0:00:13\n",
|
69 |
+
" ---------------- ----------------------- 18.9/45.9 MB 2.1 MB/s eta 0:00:13\n",
|
70 |
+
" ---------------- ----------------------- 19.1/45.9 MB 2.2 MB/s eta 0:00:13\n",
|
71 |
+
" ----------------- ---------------------- 19.7/45.9 MB 2.2 MB/s eta 0:00:13\n",
|
72 |
+
" ----------------- ---------------------- 20.2/45.9 MB 2.2 MB/s eta 0:00:12\n",
|
73 |
+
" ----------------- ---------------------- 20.4/45.9 MB 2.2 MB/s eta 0:00:12\n",
|
74 |
+
" ------------------ --------------------- 21.0/45.9 MB 2.2 MB/s eta 0:00:12\n",
|
75 |
+
" ------------------ --------------------- 21.5/45.9 MB 2.2 MB/s eta 0:00:12\n",
|
76 |
+
" ------------------ --------------------- 21.8/45.9 MB 2.2 MB/s eta 0:00:12\n",
|
77 |
+
" ------------------- -------------------- 22.3/45.9 MB 2.2 MB/s eta 0:00:11\n",
|
78 |
+
" ------------------- -------------------- 22.8/45.9 MB 2.2 MB/s eta 0:00:11\n",
|
79 |
+
" -------------------- ------------------- 23.3/45.9 MB 2.2 MB/s eta 0:00:11\n",
|
80 |
+
" -------------------- ------------------- 23.6/45.9 MB 2.2 MB/s eta 0:00:11\n",
|
81 |
+
" --------------------- ------------------ 24.1/45.9 MB 2.2 MB/s eta 0:00:11\n",
|
82 |
+
" --------------------- ------------------ 24.6/45.9 MB 2.2 MB/s eta 0:00:10\n",
|
83 |
+
" --------------------- ------------------ 24.9/45.9 MB 2.2 MB/s eta 0:00:10\n",
|
84 |
+
" ---------------------- ----------------- 25.4/45.9 MB 2.2 MB/s eta 0:00:10\n",
|
85 |
+
" ---------------------- ----------------- 26.0/45.9 MB 2.2 MB/s eta 0:00:10\n",
|
86 |
+
" ---------------------- ----------------- 26.2/45.9 MB 2.2 MB/s eta 0:00:10\n",
|
87 |
+
" ----------------------- ---------------- 26.7/45.9 MB 2.2 MB/s eta 0:00:09\n",
|
88 |
+
" ----------------------- ---------------- 27.3/45.9 MB 2.2 MB/s eta 0:00:09\n",
|
89 |
+
" ----------------------- ---------------- 27.5/45.9 MB 2.2 MB/s eta 0:00:09\n",
|
90 |
+
" ------------------------ --------------- 27.8/45.9 MB 2.2 MB/s eta 0:00:09\n",
|
91 |
+
" ------------------------ --------------- 28.3/45.9 MB 2.1 MB/s eta 0:00:09\n",
|
92 |
+
" ------------------------- -------------- 28.8/45.9 MB 2.1 MB/s eta 0:00:08\n",
|
93 |
+
" ------------------------- -------------- 29.1/45.9 MB 2.1 MB/s eta 0:00:08\n",
|
94 |
+
" ------------------------- -------------- 29.6/45.9 MB 2.1 MB/s eta 0:00:08\n",
|
95 |
+
" -------------------------- ------------- 29.9/45.9 MB 2.1 MB/s eta 0:00:08\n",
|
96 |
+
" -------------------------- ------------- 30.4/45.9 MB 2.1 MB/s eta 0:00:08\n",
|
97 |
+
" -------------------------- ------------- 30.7/45.9 MB 2.1 MB/s eta 0:00:08\n",
|
98 |
+
" --------------------------- ------------ 31.2/45.9 MB 2.1 MB/s eta 0:00:07\n",
|
99 |
+
" --------------------------- ------------ 31.7/45.9 MB 2.1 MB/s eta 0:00:07\n",
|
100 |
+
" --------------------------- ------------ 32.0/45.9 MB 2.1 MB/s eta 0:00:07\n",
|
101 |
+
" ---------------------------- ----------- 32.2/45.9 MB 2.1 MB/s eta 0:00:07\n",
|
102 |
+
" ---------------------------- ----------- 32.8/45.9 MB 2.1 MB/s eta 0:00:07\n",
|
103 |
+
" ----------------------------- ---------- 33.3/45.9 MB 2.1 MB/s eta 0:00:06\n",
|
104 |
+
" ----------------------------- ---------- 33.6/45.9 MB 2.1 MB/s eta 0:00:06\n",
|
105 |
+
" ----------------------------- ---------- 34.1/45.9 MB 2.1 MB/s eta 0:00:06\n",
|
106 |
+
" ----------------------------- ---------- 34.3/45.9 MB 2.1 MB/s eta 0:00:06\n",
|
107 |
+
" ------------------------------ --------- 34.6/45.9 MB 2.1 MB/s eta 0:00:06\n",
|
108 |
+
" ------------------------------ --------- 35.1/45.9 MB 2.1 MB/s eta 0:00:06\n",
|
109 |
+
" ------------------------------- -------- 35.7/45.9 MB 2.1 MB/s eta 0:00:05\n",
|
110 |
+
" ------------------------------- -------- 35.9/45.9 MB 2.1 MB/s eta 0:00:05\n",
|
111 |
+
" ------------------------------- -------- 36.2/45.9 MB 2.1 MB/s eta 0:00:05\n",
|
112 |
+
" ------------------------------- -------- 36.7/45.9 MB 2.1 MB/s eta 0:00:05\n",
|
113 |
+
" -------------------------------- ------- 37.0/45.9 MB 2.1 MB/s eta 0:00:05\n",
|
114 |
+
" -------------------------------- ------- 37.5/45.9 MB 2.1 MB/s eta 0:00:05\n",
|
115 |
+
" --------------------------------- ------ 38.0/45.9 MB 2.1 MB/s eta 0:00:04\n",
|
116 |
+
" --------------------------------- ------ 38.3/45.9 MB 2.1 MB/s eta 0:00:04\n",
|
117 |
+
" --------------------------------- ------ 38.8/45.9 MB 2.1 MB/s eta 0:00:04\n",
|
118 |
+
" ---------------------------------- ----- 39.1/45.9 MB 2.1 MB/s eta 0:00:04\n",
|
119 |
+
" ---------------------------------- ----- 39.6/45.9 MB 2.1 MB/s eta 0:00:04\n",
|
120 |
+
" ---------------------------------- ----- 39.8/45.9 MB 2.1 MB/s eta 0:00:03\n",
|
121 |
+
" ----------------------------------- ---- 40.4/45.9 MB 2.1 MB/s eta 0:00:03\n",
|
122 |
+
" ----------------------------------- ---- 40.6/45.9 MB 2.1 MB/s eta 0:00:03\n",
|
123 |
+
" ----------------------------------- ---- 41.2/45.9 MB 2.1 MB/s eta 0:00:03\n",
|
124 |
+
" ------------------------------------ --- 41.4/45.9 MB 2.1 MB/s eta 0:00:03\n",
|
125 |
+
" ------------------------------------ --- 41.9/45.9 MB 2.1 MB/s eta 0:00:02\n",
|
126 |
+
" ------------------------------------ --- 42.2/45.9 MB 2.1 MB/s eta 0:00:02\n",
|
127 |
+
" ------------------------------------- -- 42.7/45.9 MB 2.1 MB/s eta 0:00:02\n",
|
128 |
+
" ------------------------------------- -- 43.0/45.9 MB 2.1 MB/s eta 0:00:02\n",
|
129 |
+
" ------------------------------------- -- 43.3/45.9 MB 2.1 MB/s eta 0:00:02\n",
|
130 |
+
" -------------------------------------- - 43.8/45.9 MB 2.1 MB/s eta 0:00:02\n",
|
131 |
+
" -------------------------------------- - 44.3/45.9 MB 2.1 MB/s eta 0:00:01\n",
|
132 |
+
" -------------------------------------- - 44.6/45.9 MB 2.1 MB/s eta 0:00:01\n",
|
133 |
+
" --------------------------------------- 45.1/45.9 MB 2.1 MB/s eta 0:00:01\n",
|
134 |
+
" --------------------------------------- 45.4/45.9 MB 2.1 MB/s eta 0:00:01\n",
|
135 |
+
" --------------------------------------- 45.9/45.9 MB 2.1 MB/s eta 0:00:01\n",
|
136 |
+
" ---------------------------------------- 45.9/45.9 MB 2.0 MB/s eta 0:00:00\n",
|
137 |
+
"Downloading smart_open-7.1.0-py3-none-any.whl (61 kB)\n",
|
138 |
+
"Installing collected packages: smart-open, numpy, scipy, gensim\n",
|
139 |
+
" Attempting uninstall: numpy\n",
|
140 |
+
" Found existing installation: numpy 2.1.3\n",
|
141 |
+
" Uninstalling numpy-2.1.3:\n",
|
142 |
+
" Successfully uninstalled numpy-2.1.3\n",
|
143 |
+
" Attempting uninstall: scipy\n",
|
144 |
+
" Found existing installation: scipy 1.15.1\n",
|
145 |
+
" Uninstalling scipy-1.15.1:\n",
|
146 |
+
" Successfully uninstalled scipy-1.15.1\n",
|
147 |
+
"Successfully installed gensim-4.3.3 numpy-1.26.4 scipy-1.13.1 smart-open-7.1.0\n"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"name": "stderr",
|
152 |
+
"output_type": "stream",
|
153 |
+
"text": [
|
154 |
+
" WARNING: Failed to remove contents in a temporary directory 'C:\\Users\\LGR\\AppData\\Local\\Temp\\pip-uninstall-bzrgm1pe'.\n",
|
155 |
+
" You can safely remove it manually.\n",
|
156 |
+
" WARNING: Failed to remove contents in a temporary directory 'C:\\ProgramData\\anaconda3\\Lib\\site-packages\\~~mpy.libs'.\n",
|
157 |
+
" You can safely remove it manually.\n",
|
158 |
+
"ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
159 |
+
"tensorflow-intel 2.18.0 requires ml-dtypes<0.5.0,>=0.4.0, but you have ml-dtypes 0.5.1 which is incompatible.\n",
|
160 |
+
"tensorflow-intel 2.18.0 requires tensorboard<2.19,>=2.18, but you have tensorboard 2.19.0 which is incompatible.\n",
|
161 |
+
"bokeh 3.6.2 requires tornado>=6.2, but you have tornado 6.1 which is incompatible.\n",
|
162 |
+
"scikit-image 0.25.0 requires pillow>=10.1, but you have pillow 9.5.0 which is incompatible.\n"
|
163 |
+
]
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"source": [
|
167 |
+
"!pip install gensim numpy"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": 2,
|
173 |
+
"id": "a6600c17-fb8e-4e8c-a6a1-d25084447144",
|
174 |
+
"metadata": {},
|
175 |
+
"outputs": [],
|
176 |
+
"source": [
|
177 |
+
"import gensim.downloader as api\n",
|
178 |
+
"\n",
|
179 |
+
"# Bu satır modeli ilk kez indirir ve önbelleğe alır\n",
|
180 |
+
"model = api.load(\"word2vec-google-news-300\")"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"cell_type": "code",
|
185 |
+
"execution_count": 3,
|
186 |
+
"id": "6d55403c-62fc-4d07-9306-ca11593bcaa2",
|
187 |
+
"metadata": {},
|
188 |
+
"outputs": [
|
189 |
+
{
|
190 |
+
"data": {
|
191 |
+
"text/plain": [
|
192 |
+
"0.05226295"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
"execution_count": 3,
|
196 |
+
"metadata": {},
|
197 |
+
"output_type": "execute_result"
|
198 |
+
}
|
199 |
+
],
|
200 |
+
"source": [
|
201 |
+
"# En benzer kelimeleri getir\n",
|
202 |
+
"model.most_similar(\"spy\")\n",
|
203 |
+
"\n",
|
204 |
+
"# İki kelime arasındaki benzerlik\n",
|
205 |
+
"model.similarity(\"dog\", \"cat\")\n",
|
206 |
+
"model.similarity(\"dog\", \"explosion\")"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"cell_type": "markdown",
|
211 |
+
"id": "e56a26c9-a705-4e54-83e2-331e03586f36",
|
212 |
+
"metadata": {},
|
213 |
+
"source": [
|
214 |
+
"AI Strateji Fonksiyonu: oner_ipucu()\n",
|
215 |
+
"Bu fonksiyon:\n",
|
216 |
+
"\n",
|
217 |
+
"Hedef kelimelere yakın\n",
|
218 |
+
"\n",
|
219 |
+
"Yasaklı kelimelere uzak\n",
|
220 |
+
"olan en iyi ipucunu seçecek."
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "code",
|
225 |
+
"execution_count": 4,
|
226 |
+
"id": "8d01664b-2ca0-407c-a51c-55f19ec5615f",
|
227 |
+
"metadata": {},
|
228 |
+
"outputs": [],
|
229 |
+
"source": [
|
230 |
+
"def oner_ipucu(hedefler, yasaklar, model, aday_kelimeler=None, top_n=1):\n",
|
231 |
+
" from numpy import mean\n",
|
232 |
+
"\n",
|
233 |
+
" # Hedef ve yasaklı kelimeleri dışlayacağımız bir set\n",
|
234 |
+
" filtre = set(hedefler + yasaklar)\n",
|
235 |
+
"\n",
|
236 |
+
" if aday_kelimeler is None:\n",
|
237 |
+
" aday_kelimeler = list(model.key_to_index.keys())\n",
|
238 |
+
"\n",
|
239 |
+
" en_iyi_ipucu = None\n",
|
240 |
+
" en_iyi_skor = -float(\"inf\")\n",
|
241 |
+
"\n",
|
242 |
+
" for kelime in aday_kelimeler:\n",
|
243 |
+
" if kelime in filtre:\n",
|
244 |
+
" continue # hedef ya da yasaklılardan biri zaten, geç\n",
|
245 |
+
"\n",
|
246 |
+
" try:\n",
|
247 |
+
" hedef_skor = mean([model.similarity(kelime, h) for h in hedefler if h in model])\n",
|
248 |
+
" yasak_skor = mean([model.similarity(kelime, y) for y in yasaklar if y in model])\n",
|
249 |
+
" toplam_skor = hedef_skor - yasak_skor\n",
|
250 |
+
"\n",
|
251 |
+
" if toplam_skor > en_iyi_skor:\n",
|
252 |
+
" en_iyi_skor = toplam_skor\n",
|
253 |
+
" en_iyi_ipucu = kelime\n",
|
254 |
+
"\n",
|
255 |
+
" except KeyError:\n",
|
256 |
+
" continue\n",
|
257 |
+
"\n",
|
258 |
+
" return en_iyi_ipucu\n",
|
259 |
+
"\n"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": 5,
|
265 |
+
"id": "a24840d8-ecfe-4119-a25a-514e9ec42a55",
|
266 |
+
"metadata": {},
|
267 |
+
"outputs": [
|
268 |
+
{
|
269 |
+
"name": "stdout",
|
270 |
+
"output_type": "stream",
|
271 |
+
"text": [
|
272 |
+
"🔍 Geliştirilmiş Önerilen ipucu: cats\n"
|
273 |
+
]
|
274 |
+
}
|
275 |
+
],
|
276 |
+
"source": [
|
277 |
+
"hedefler = [\"dog\", \"cat\", \"fish\"]\n",
|
278 |
+
"yasaklar = [\"bomb\", \"knife\", \"gun\"]\n",
|
279 |
+
"\n",
|
280 |
+
"ipucu = oner_ipucu(hedefler, yasaklar, model)\n",
|
281 |
+
"print(\"🔍 Geliştirilmiş Önerilen ipucu:\", ipucu)\n"
|
282 |
+
]
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"cell_type": "code",
|
286 |
+
"execution_count": null,
|
287 |
+
"id": "b56df5e1-eb56-4a4b-83a4-172476551353",
|
288 |
+
"metadata": {},
|
289 |
+
"outputs": [],
|
290 |
+
"source": []
|
291 |
+
}
|
292 |
+
],
|
293 |
+
"metadata": {
|
294 |
+
"kernelspec": {
|
295 |
+
"display_name": "Python 3 (ipykernel)",
|
296 |
+
"language": "python",
|
297 |
+
"name": "python3"
|
298 |
+
},
|
299 |
+
"language_info": {
|
300 |
+
"codemirror_mode": {
|
301 |
+
"name": "ipython",
|
302 |
+
"version": 3
|
303 |
+
},
|
304 |
+
"file_extension": ".py",
|
305 |
+
"mimetype": "text/x-python",
|
306 |
+
"name": "python",
|
307 |
+
"nbconvert_exporter": "python",
|
308 |
+
"pygments_lexer": "ipython3",
|
309 |
+
"version": "3.12.9"
|
310 |
+
}
|
311 |
+
},
|
312 |
+
"nbformat": 4,
|
313 |
+
"nbformat_minor": 5
|
314 |
+
}
|
NOte.txt
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Proje Özeti: Codenames AI Assistant
|
2 |
+
Oyunda bir “spymaster” olarak çalışan yapay zeka modeli, elindeki kelimelere bakarak takımına ipuçları (tek bir kelime) vermeye çalışır. Amaç:
|
3 |
+
🔹 Hedef kelimelerle ilişkili bir ipucu bulmak
|
4 |
+
🔹 Rakip veya yasak kelimelere yaklaşmamak
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
💡 Teknik Bileşenler:
|
10 |
+
Bileşen Açıklama
|
11 |
+
Embedding Word2Vec / FastText / GloVe
|
12 |
+
Benzerlik Ölçümü Cosine Similarity
|
13 |
+
Strateji Maksimum hedef benzerliği + minimum rakip/assassin uzaklığı
|
14 |
+
Arayüz Streamlit (görsel oyun tahtası + AI önerisi)
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
🧠 Yapay Zeka Ne Yapacak?
|
19 |
+
Hedef kelimeler listesi verilecek
|
20 |
+
|
21 |
+
Yasaklı kelimeler (rakip + assassin) de belirtilecek
|
22 |
+
|
23 |
+
Model, embedding'ler üzerinden tüm kelimeleri tarayacak
|
24 |
+
|
25 |
+
Hem hedeflere en yakın, hem de yasaklılara en uzak olan en iyi ipucuyu önerecek
|
26 |
+
|
27 |
+
📂 Başlangıç Planı:
|
28 |
+
✅ Proje dosyası oluştur (codenames_ai)
|
29 |
+
|
30 |
+
Word2Vec vektörleri indir (hazır model)
|
31 |
+
|
32 |
+
Basit örnekle strateji algoritması geliştir
|
33 |
+
|
34 |
+
Streamlit arayüzü (girdi: hedef + yasaklı kelimeler → çıktı: ipucu)
|
35 |
+
|
README.md
CHANGED
@@ -1,20 +1,42 @@
|
|
1 |
-
---
|
2 |
-
title: Codenames AI Assistant
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo: red
|
6 |
-
sdk:
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: "Codenames AI Assistant"
|
3 |
+
emoji: 🧠
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
+
sdk: streamlit
|
7 |
+
app_file: app.py
|
8 |
+
pinned: true
|
9 |
+
tags:
|
10 |
+
- nlp
|
11 |
+
- word2vec
|
12 |
+
- strategy
|
13 |
+
- ai
|
14 |
+
- streamlit
|
15 |
+
- game
|
16 |
+
license: mit
|
17 |
+
---
|
18 |
+
|
19 |
+
# 🧠 Codenames AI Assistant
|
20 |
+
|
21 |
+
Bu proje, **Codenames** oyununda hedef kelimelere en uygun **tek kelimelik ipucu**yu bulmaya çalışan bir yapay zeka strateji aracıdır.
|
22 |
+
Word2Vec modeli ile anlamsal benzerlik hesaplanır, hedeflere yakın, yasaklara uzak en iyi kelime önerilir.
|
23 |
+
|
24 |
+
## 🔍 Kullanılan Teknikler
|
25 |
+
|
26 |
+
- Gensim ile önceden eğitilmiş `word2vec-google-news-300`
|
27 |
+
- Cosine benzerliği
|
28 |
+
- Stratejik kelime seçimi
|
29 |
+
|
30 |
+
## 🧩 Nasıl Çalışır?
|
31 |
+
|
32 |
+
- Hedef ve yasaklı kelimeleri gir
|
33 |
+
- AI, en alakalı ve güvenli kelimeyi önerir
|
34 |
+
- Model eğitimi yoktur (hazır embedding kullanılır)
|
35 |
+
|
36 |
+
## 🧠 Örnek
|
37 |
+
|
38 |
+
```python
|
39 |
+
hedefler = ["dog", "cat", "fish"]
|
40 |
+
yasaklar = ["bomb", "knife", "gun"]
|
41 |
+
ipucu = oner_ipucu(hedefler, yasaklar, model)
|
42 |
+
print(ipucu) # animal gibi bir sonuç dönebilir
|
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import gensim.downloader as api
|
3 |
+
import numpy as np
|
4 |
+
import string
|
5 |
+
import re
|
6 |
+
|
7 |
+
# 🔹 AI ipucu önerici
|
8 |
+
def oner_ipucu(hedefler, yasaklar, model, aday_kelimeler=None):
|
9 |
+
filtre = set(hedefler + yasaklar)
|
10 |
+
if aday_kelimeler is None:
|
11 |
+
aday_kelimeler = list(model.key_to_index.keys())
|
12 |
+
|
13 |
+
en_iyi_ipucu = None
|
14 |
+
en_iyi_skor = -float("inf")
|
15 |
+
|
16 |
+
for kelime in aday_kelimeler:
|
17 |
+
if kelime in filtre:
|
18 |
+
continue
|
19 |
+
try:
|
20 |
+
hedef_skor = np.mean([model.similarity(kelime, h) for h in hedefler if h in model])
|
21 |
+
yasak_skor = np.mean([model.similarity(kelime, y) for y in yasaklar if y in model])
|
22 |
+
toplam_skor = hedef_skor - yasak_skor
|
23 |
+
if toplam_skor > en_iyi_skor:
|
24 |
+
en_iyi_skor = toplam_skor
|
25 |
+
en_iyi_ipucu = kelime
|
26 |
+
except KeyError:
|
27 |
+
continue
|
28 |
+
|
29 |
+
return en_iyi_ipucu
|
30 |
+
|
31 |
+
# 🧠 Word2Vec modeli yükle (ilk seferde indirir)
|
32 |
+
@st.cache_resource
|
33 |
+
def load_model():
|
34 |
+
return api.load("word2vec-google-news-300")
|
35 |
+
|
36 |
+
model = load_model()
|
37 |
+
|
38 |
+
# 🎯 Uygulama Başlığı
|
39 |
+
st.title("🧠 Codenames AI Assistant")
|
40 |
+
st.subheader("💡 Yapay Zeka ile Stratejik İpucu Önerici")
|
41 |
+
|
42 |
+
# 🎯 Girdiler
|
43 |
+
hedef_input = st.text_input("🎯 Hedef kelimeler (virgülle ayırın)", "dog, cat, fish")
|
44 |
+
yasak_input = st.text_input("⛔ Yasaklı kelimeler (virgülle ayırın)", "bomb, knife, gun")
|
45 |
+
|
46 |
+
# Buton
|
47 |
+
if st.button("🔍 En iyi ipucuyu öner"):
|
48 |
+
hedefler = [w.strip().lower() for w in hedef_input.split(",")]
|
49 |
+
yasaklar = [w.strip().lower() for w in yasak_input.split(",")]
|
50 |
+
|
51 |
+
ipucu = oner_ipucu(hedefler, yasaklar, model)
|
52 |
+
if ipucu:
|
53 |
+
st.success(f"🎯 Önerilen İpucu: **{ipucu}**")
|
54 |
+
else:
|
55 |
+
st.error("Uygun ipucu bulunamadı. Kelimeleri kontrol edin.")
|
config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```json
|
2 |
+
{
|
3 |
+
"model_type": "embedding",
|
4 |
+
"library_name": "gensim",
|
5 |
+
"pipeline_tag": "text-classification",
|
6 |
+
"tags": [
|
7 |
+
"nlp",
|
8 |
+
"word2vec",
|
9 |
+
"streamlit",
|
10 |
+
"codenames",
|
11 |
+
"game",
|
12 |
+
"strategy"
|
13 |
+
]
|
14 |
+
}
|
model.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
model internetten yüklenir.
|
2 |
+
import gensim.downloader as api
|
3 |
+
model = api.load("word2vec-google-news-300")
|
sample_input.json
ADDED
File without changes
|