File size: 1,307 Bytes
86ce230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---

title: "๐Ÿ’Ž Gemstone Price Regression"
emoji: ๐Ÿ’ฐ
colorFrom: indigo
colorTo: blue
sdk: streamlit
app_file: app.py
pinned: true
license: mit
tags:
  - regression
  - machine-learning
  - streamlit
  - diamonds
  - synthetic-data
---


# ๐Ÿ’Ž Gemstone Price Prediction App

This Streamlit app predicts the price of a gemstone using its physical and quality-related features.

## ๐Ÿง  Project Overview

- This project simulates a **gemstone pricing system** using synthetic tabular data.
- Features include: `carat`, `depth`, `table`, `x`, `y`, `z`, `clarity_score`, `color_score`, and `cut_score`.
- The target variable is **price** (USD).
- Model: **RandomForestRegressor**
- Trained on 1000 synthetic samples.

---

## ๐Ÿ“Š Performance

- RMSE: **605.16**
- Rยฒ Score: **0.9549**

---

## ๐Ÿš€ How to Run Locally

```bash

pip install -r requirements.txt

streamlit run app.py







๐Ÿ”ฎ Future Work

Area	Improvement

Model	Try XGBoost, LightGBM

Feature Engineering	Interaction terms, log/carat scaling

Deployment	Add API endpoint with FastAPI

Real-world Data	Integrate real gemstone datasets





๐Ÿ“ Files

app.py: Streamlit interface



rf_model.pkl: Trained model



model_columns.pkl: List of input features



requirements.txt: Required libraries