Spaces:
Sleeping
Sleeping
File size: 1,307 Bytes
6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 6a537b5 6189726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
title: "๐ Gemstone Price Regression"
emoji: ๐ฐ
colorFrom: indigo
colorTo: blue
sdk: streamlit
app_file: app.py
pinned: true
license: mit
tags:
- regression
- machine-learning
- streamlit
- diamonds
- synthetic-data
---
# ๐ Gemstone Price Prediction App
This Streamlit app predicts the price of a gemstone using its physical and quality-related features.
## ๐ง Project Overview
- This project simulates a **gemstone pricing system** using synthetic tabular data.
- Features include: `carat`, `depth`, `table`, `x`, `y`, `z`, `clarity_score`, `color_score`, and `cut_score`.
- The target variable is **price** (USD).
- Model: **RandomForestRegressor**
- Trained on 1000 synthetic samples.
---
## ๐ Performance
- RMSE: **605.16**
- Rยฒ Score: **0.9549**
---
## ๐ How to Run Locally
```bash
pip install -r requirements.txt
streamlit run app.py
๐ฎ Future Work
Area Improvement
Model Try XGBoost, LightGBM
Feature Engineering Interaction terms, log/carat scaling
Deployment Add API endpoint with FastAPI
Real-world Data Integrate real gemstone datasets
๐ Files
app.py: Streamlit interface
rf_model.pkl: Trained model
model_columns.pkl: List of input features
requirements.txt: Required libraries
|