File size: 1,307 Bytes
6189726
6a537b5
 
6189726
6a537b5
6189726
 
 
 
 
 
 
 
6a537b5
 
6189726
 
6a537b5
6189726
6a537b5
6189726
6a537b5
6189726
6a537b5
 
 
 
 
6189726
 
 
6a537b5
6189726
6a537b5
 
6189726
 
 
6a537b5
6189726
6a537b5
 
 
6189726
 
 
6a537b5
 
 
 
 
 
6189726
 
6a537b5
 
6189726
6a537b5
6189726
6a537b5
6189726
6a537b5
6189726
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---

title: "๐Ÿ’Ž Gemstone Price Regression"
emoji: ๐Ÿ’ฐ
colorFrom: indigo
colorTo: blue
sdk: streamlit
app_file: app.py
pinned: true
license: mit
tags:
  - regression
  - machine-learning
  - streamlit
  - diamonds
  - synthetic-data
---


# ๐Ÿ’Ž Gemstone Price Prediction App

This Streamlit app predicts the price of a gemstone using its physical and quality-related features.

## ๐Ÿง  Project Overview

- This project simulates a **gemstone pricing system** using synthetic tabular data.
- Features include: `carat`, `depth`, `table`, `x`, `y`, `z`, `clarity_score`, `color_score`, and `cut_score`.
- The target variable is **price** (USD).
- Model: **RandomForestRegressor**
- Trained on 1000 synthetic samples.

---

## ๐Ÿ“Š Performance

- RMSE: **605.16**
- Rยฒ Score: **0.9549**

---

## ๐Ÿš€ How to Run Locally

```bash

pip install -r requirements.txt

streamlit run app.py







๐Ÿ”ฎ Future Work

Area	Improvement

Model	Try XGBoost, LightGBM

Feature Engineering	Interaction terms, log/carat scaling

Deployment	Add API endpoint with FastAPI

Real-world Data	Integrate real gemstone datasets





๐Ÿ“ Files

app.py: Streamlit interface



rf_model.pkl: Trained model



model_columns.pkl: List of input features



requirements.txt: Required libraries