--- title: "💎 Gemstone Price Regression" emoji: 💰 colorFrom: indigo colorTo: blue sdk: streamlit app_file: app.py pinned: true license: mit tags: - regression - machine-learning - streamlit - diamonds - synthetic-data --- # 💎 Gemstone Price Prediction App This Streamlit app predicts the price of a gemstone using its physical and quality-related features. ## 🧠 Project Overview - This project simulates a **gemstone pricing system** using synthetic tabular data. - Features include: `carat`, `depth`, `table`, `x`, `y`, `z`, `clarity_score`, `color_score`, and `cut_score`. - The target variable is **price** (USD). - Model: **RandomForestRegressor** - Trained on 1000 synthetic samples. --- ## 📊 Performance - RMSE: **605.16** - R² Score: **0.9549** --- ## 🚀 How to Run Locally ```bash pip install -r requirements.txt streamlit run app.py 🔮 Future Work Area Improvement Model Try XGBoost, LightGBM Feature Engineering Interaction terms, log/carat scaling Deployment Add API endpoint with FastAPI Real-world Data Integrate real gemstone datasets 📁 Files app.py: Streamlit interface rf_model.pkl: Trained model model_columns.pkl: List of input features requirements.txt: Required libraries