Upload 8 files
Browse files- .gitattributes +1 -0
- README.md +83 -20
- Street Fighter Move Recognizer.ipynb +480 -0
- app.py +31 -0
- joystick_move_model.keras +3 -0
- label_encoder.pkl +3 -0
- projeözet.txt +65 -0
- requirements.txt +5 -3
- tokenizer.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
joystick_move_model.keras filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,20 +1,83 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- deep-learning
|
4 |
+
- lstm
|
5 |
+
- game-ai
|
6 |
+
- sequence-classification
|
7 |
+
- streamlit-app
|
8 |
+
---
|
9 |
+
|
10 |
+
# 🎮 Street Fighter Move Recognizer
|
11 |
+
|
12 |
+
Bu proje, joystick kombinasyonlarını analiz ederek oyuncunun hangi **özel hareketi** yapmak istediğini tahmin eden bir makine öğrenimi modelini içermektedir. Veri simüle edilmiştir ve Street Fighter benzeri dövüş oyunlarından esinlenilmiştir.
|
13 |
+
|
14 |
+
## 🧠 Proje Hedefi
|
15 |
+
|
16 |
+
Joystick sekanslarından (`["DOWN", "RIGHT", "PUNCH"]` gibi) yola çıkarak hangi **move (hareket)** yapıldığını sınıflandıran bir sekans model geliştirmek. Bu, oyun AI sistemlerinin temel yapı taşlarından biridir.
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
+
## 📊 Kullanılan Veri
|
21 |
+
|
22 |
+
Veri seti manuel olarak oluşturulmuştur ve aşağıdaki gibi örnek joystick girişlerinden ve etiketli hareket isimlerinden oluşur:
|
23 |
+
|
24 |
+
| Joystick Sequence | Move |
|
25 |
+
|-----------------------------|----------------|
|
26 |
+
| DOWN,RIGHT,PUNCH | Hadouken |
|
27 |
+
| RIGHT,DOWN,RIGHT,KICK | Shoryuken |
|
28 |
+
| LEFT,LEFT,PUNCH | Dash Punch |
|
29 |
+
| DOWN,KICK | Low Kick |
|
30 |
+
| LEFT,DOWN,RIGHT,PUNCH | Combo Strike |
|
31 |
+
| ... | ... |
|
32 |
+
|
33 |
+
---
|
34 |
+
|
35 |
+
## 🔧 Kullanılan Teknolojiler
|
36 |
+
|
37 |
+
- **TensorFlow / Keras** – LSTM model ile sekans sınıflandırma
|
38 |
+
- **scikit-learn** – LabelEncoder
|
39 |
+
- **Streamlit** – Web arayüzü
|
40 |
+
- **Pickle** – Model nesnelerinin kaydedilmesi
|
41 |
+
- **Hugging Face Hub** – Model paylaşımı
|
42 |
+
- **GitHub** – Kod ve dokümantasyon paylaşımı
|
43 |
+
|
44 |
+
---
|
45 |
+
|
46 |
+
## 🏗️ Model Mimarisi
|
47 |
+
|
48 |
+
- `Tokenizer` ile joystick girişleri tokenize edildi
|
49 |
+
- `pad_sequences` ile sabit uzunlukta girişe dönüştürüldü
|
50 |
+
- `LSTM` tabanlı sekans modeli eğitildi
|
51 |
+
- `LabelEncoder` ile sınıf etiketleri dönüştürüldü
|
52 |
+
- Model `.keras`, `tokenizer.pkl`, `label_encoder.pkl` olarak kaydedildi
|
53 |
+
|
54 |
+
---
|
55 |
+
|
56 |
+
## 🚀 Streamlit Uygulaması
|
57 |
+
|
58 |
+
Kullanıcıdan joystick kombinasyonu alınır ve model ile eşleşen hareket tahmin edilir.
|
59 |
+
|
60 |
+
### Uygulamayı Başlatmak İçin:
|
61 |
+
```bash
|
62 |
+
streamlit run app.py
|
63 |
+
|
64 |
+
|
65 |
+
🔬 Örnek Tahmin
|
66 |
+
DOWN,RIGHT,PUNCH
|
67 |
+
Çıktı:
|
68 |
+
Tahmin Edilen Hareket: Hadouken
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
💡 Gelecekte Ne Yapılabilir?
|
73 |
+
Gerçek zamanlı joystick verisi entegrasyonu
|
74 |
+
|
75 |
+
Sesli komut tanıma ile komboları tetikleme
|
76 |
+
|
77 |
+
Mobil uyumlu arayüz
|
78 |
+
|
79 |
+
Daha fazla kombo ile veri setinin genişletilmesi
|
80 |
+
|
81 |
+
|
82 |
+
📚 Eğitim Amaçlıdır
|
83 |
+
Bu proje, oyun zekası ve sekans modellemeyi birleştiren bir örnek olarak eğitim amaçlı geliştirilmiştir.
|
Street Fighter Move Recognizer.ipynb
ADDED
@@ -0,0 +1,480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "a38a8be9-9f57-4d4e-b101-704e636db4fe",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Requirement already satisfied: tensorflow in c:\\programdata\\anaconda3\\lib\\site-packages (2.19.0)\n",
|
14 |
+
"Requirement already satisfied: scikit-learn in c:\\programdata\\anaconda3\\lib\\site-packages (1.6.1)\n",
|
15 |
+
"Requirement already satisfied: pandas in c:\\programdata\\anaconda3\\lib\\site-packages (2.2.3)\n",
|
16 |
+
"Requirement already satisfied: absl-py>=1.0.0 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (2.1.0)\n",
|
17 |
+
"Requirement already satisfied: astunparse>=1.6.0 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (1.6.3)\n",
|
18 |
+
"Requirement already satisfied: flatbuffers>=24.3.25 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (25.2.10)\n",
|
19 |
+
"Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (0.6.0)\n",
|
20 |
+
"Requirement already satisfied: google-pasta>=0.1.1 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (0.2.0)\n",
|
21 |
+
"Requirement already satisfied: libclang>=13.0.0 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (18.1.1)\n",
|
22 |
+
"Requirement already satisfied: opt-einsum>=2.3.2 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (3.4.0)\n",
|
23 |
+
"Requirement already satisfied: packaging in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (24.2)\n",
|
24 |
+
"Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<6.0.0dev,>=3.20.3 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (5.29.3)\n",
|
25 |
+
"Requirement already satisfied: requests<3,>=2.21.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (2.32.3)\n",
|
26 |
+
"Requirement already satisfied: setuptools in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (72.1.0)\n",
|
27 |
+
"Requirement already satisfied: six>=1.12.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (1.17.0)\n",
|
28 |
+
"Requirement already satisfied: termcolor>=1.1.0 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (2.5.0)\n",
|
29 |
+
"Requirement already satisfied: typing-extensions>=3.6.6 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorflow) (4.12.2)\n",
|
30 |
+
"Requirement already satisfied: wrapt>=1.11.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (1.17.0)\n",
|
31 |
+
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (1.71.0)\n",
|
32 |
+
"Requirement already satisfied: tensorboard~=2.19.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (2.19.0)\n",
|
33 |
+
"Requirement already satisfied: keras>=3.5.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (3.10.0)\n",
|
34 |
+
"Requirement already satisfied: numpy<2.2.0,>=1.26.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (1.26.4)\n",
|
35 |
+
"Requirement already satisfied: h5py>=3.11.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (3.12.1)\n",
|
36 |
+
"Requirement already satisfied: ml-dtypes<1.0.0,>=0.5.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow) (0.5.1)\n",
|
37 |
+
"Requirement already satisfied: scipy>=1.6.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-learn) (1.13.1)\n",
|
38 |
+
"Requirement already satisfied: joblib>=1.2.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-learn) (1.4.2)\n",
|
39 |
+
"Requirement already satisfied: threadpoolctl>=3.1.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-learn) (3.5.0)\n",
|
40 |
+
"Requirement already satisfied: python-dateutil>=2.8.2 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (2.9.0.post0)\n",
|
41 |
+
"Requirement already satisfied: pytz>=2020.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (2024.1)\n",
|
42 |
+
"Requirement already satisfied: tzdata>=2022.7 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (2023.3)\n",
|
43 |
+
"Requirement already satisfied: wheel<1.0,>=0.23.0 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from astunparse>=1.6.0->tensorflow) (0.45.1)\n",
|
44 |
+
"Requirement already satisfied: rich in c:\\programdata\\anaconda3\\lib\\site-packages (from keras>=3.5.0->tensorflow) (13.9.4)\n",
|
45 |
+
"Requirement already satisfied: namex in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from keras>=3.5.0->tensorflow) (0.0.8)\n",
|
46 |
+
"Requirement already satisfied: optree in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from keras>=3.5.0->tensorflow) (0.14.0)\n",
|
47 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow) (3.3.2)\n",
|
48 |
+
"Requirement already satisfied: idna<4,>=2.5 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow) (3.7)\n",
|
49 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow) (2.3.0)\n",
|
50 |
+
"Requirement already satisfied: certifi>=2017.4.17 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow) (2025.1.31)\n",
|
51 |
+
"Requirement already satisfied: markdown>=2.6.8 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorboard~=2.19.0->tensorflow) (3.4.1)\n",
|
52 |
+
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in c:\\users\\lgr\\appdata\\roaming\\python\\python312\\site-packages (from tensorboard~=2.19.0->tensorflow) (0.7.2)\n",
|
53 |
+
"Requirement already satisfied: werkzeug>=1.0.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorboard~=2.19.0->tensorflow) (3.1.3)\n",
|
54 |
+
"Requirement already satisfied: MarkupSafe>=2.1.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from werkzeug>=1.0.1->tensorboard~=2.19.0->tensorflow) (3.0.2)\n",
|
55 |
+
"Requirement already satisfied: markdown-it-py>=2.2.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from rich->keras>=3.5.0->tensorflow) (2.2.0)\n",
|
56 |
+
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from rich->keras>=3.5.0->tensorflow) (2.15.1)\n",
|
57 |
+
"Requirement already satisfied: mdurl~=0.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from markdown-it-py>=2.2.0->rich->keras>=3.5.0->tensorflow) (0.1.0)\n",
|
58 |
+
"Note: you may need to restart the kernel to use updated packages.\n"
|
59 |
+
]
|
60 |
+
}
|
61 |
+
],
|
62 |
+
"source": [
|
63 |
+
"pip install tensorflow scikit-learn pandas\n"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 2,
|
69 |
+
"id": "0b044499-8bd6-4e40-84b9-2d7f22c180b1",
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"import pandas as pd\n",
|
74 |
+
"\n",
|
75 |
+
"data = {\n",
|
76 |
+
" \"sequence\": [\n",
|
77 |
+
" \"DOWN,RIGHT,PUNCH\",\n",
|
78 |
+
" \"RIGHT,DOWN,RIGHT,KICK\",\n",
|
79 |
+
" \"LEFT,LEFT,PUNCH\",\n",
|
80 |
+
" \"DOWN,KICK\",\n",
|
81 |
+
" \"UP,PUNCH\",\n",
|
82 |
+
" \"RIGHT,RIGHT,KICK\",\n",
|
83 |
+
" \"DOWN,DOWN,RIGHT,PUNCH\",\n",
|
84 |
+
" \"LEFT,DOWN,RIGHT,PUNCH\"\n",
|
85 |
+
" ],\n",
|
86 |
+
" \"move\": [\n",
|
87 |
+
" \"Hadouken\",\n",
|
88 |
+
" \"Shoryuken\",\n",
|
89 |
+
" \"Dash Punch\",\n",
|
90 |
+
" \"Low Kick\",\n",
|
91 |
+
" \"Jump Punch\",\n",
|
92 |
+
" \"Double Kick\",\n",
|
93 |
+
" \"Super Hadouken\",\n",
|
94 |
+
" \"Combo Strike\"\n",
|
95 |
+
" ]\n",
|
96 |
+
"}\n",
|
97 |
+
"\n",
|
98 |
+
"df = pd.DataFrame(data)\n"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"cell_type": "code",
|
103 |
+
"execution_count": 3,
|
104 |
+
"id": "606f2fd1-42b8-49f0-87b7-cc2f5c450662",
|
105 |
+
"metadata": {},
|
106 |
+
"outputs": [],
|
107 |
+
"source": [
|
108 |
+
"# Tokenizer ve Label Encoding\n",
|
109 |
+
"\n",
|
110 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
111 |
+
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
|
112 |
+
"from tensorflow.keras.preprocessing.text import Tokenizer\n",
|
113 |
+
"\n",
|
114 |
+
"# Joystick hareketlerini tokenize et\n",
|
115 |
+
"tokenizer = Tokenizer(filters='', lower=False, split=',')\n",
|
116 |
+
"tokenizer.fit_on_texts(df['sequence'])\n",
|
117 |
+
"\n",
|
118 |
+
"X_seq = tokenizer.texts_to_sequences(df['sequence'])\n",
|
119 |
+
"X_pad = pad_sequences(X_seq, padding='post') # sekansları eşitle\n",
|
120 |
+
"\n",
|
121 |
+
"# Etiketleri sayısallaştır\n",
|
122 |
+
"le = LabelEncoder()\n",
|
123 |
+
"y_encoded = le.fit_transform(df['move'])\n",
|
124 |
+
"\n",
|
125 |
+
"# Bilgiler\n",
|
126 |
+
"vocab_size = len(tokenizer.word_index) + 1\n",
|
127 |
+
"num_classes = len(le.classes_)\n"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 4,
|
133 |
+
"id": "e654d9b3-faea-4888-a4a3-e3cc6b762940",
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [
|
136 |
+
{
|
137 |
+
"name": "stdout",
|
138 |
+
"output_type": "stream",
|
139 |
+
"text": [
|
140 |
+
"Epoch 1/100\n"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"name": "stderr",
|
145 |
+
"output_type": "stream",
|
146 |
+
"text": [
|
147 |
+
"C:\\ProgramData\\anaconda3\\Lib\\site-packages\\keras\\src\\layers\\core\\embedding.py:97: UserWarning: Argument `input_length` is deprecated. Just remove it.\n",
|
148 |
+
" warnings.warn(\n"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"name": "stdout",
|
153 |
+
"output_type": "stream",
|
154 |
+
"text": [
|
155 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2s/step - accuracy: 0.2500 - loss: 2.0767\n",
|
156 |
+
"Epoch 2/100\n",
|
157 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.2500 - loss: 2.0758\n",
|
158 |
+
"Epoch 3/100\n",
|
159 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - accuracy: 0.3750 - loss: 2.0749\n",
|
160 |
+
"Epoch 4/100\n",
|
161 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 0.5000 - loss: 2.0739\n",
|
162 |
+
"Epoch 5/100\n",
|
163 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.6250 - loss: 2.0730\n",
|
164 |
+
"Epoch 6/100\n",
|
165 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.5000 - loss: 2.0720\n",
|
166 |
+
"Epoch 7/100\n",
|
167 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.6250 - loss: 2.0710\n",
|
168 |
+
"Epoch 8/100\n",
|
169 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - accuracy: 0.5000 - loss: 2.0699\n",
|
170 |
+
"Epoch 9/100\n",
|
171 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.5000 - loss: 2.0689\n",
|
172 |
+
"Epoch 10/100\n",
|
173 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.5000 - loss: 2.0677\n",
|
174 |
+
"Epoch 11/100\n",
|
175 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step - accuracy: 0.5000 - loss: 2.0665\n",
|
176 |
+
"Epoch 12/100\n",
|
177 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.5000 - loss: 2.0653\n",
|
178 |
+
"Epoch 13/100\n",
|
179 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.6250 - loss: 2.0640\n",
|
180 |
+
"Epoch 14/100\n",
|
181 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 0.6250 - loss: 2.0626\n",
|
182 |
+
"Epoch 15/100\n",
|
183 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - accuracy: 0.6250 - loss: 2.0612\n",
|
184 |
+
"Epoch 16/100\n",
|
185 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 0.6250 - loss: 2.0597\n",
|
186 |
+
"Epoch 17/100\n",
|
187 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.6250 - loss: 2.0581\n",
|
188 |
+
"Epoch 18/100\n",
|
189 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.6250 - loss: 2.0564\n",
|
190 |
+
"Epoch 19/100\n",
|
191 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.6250 - loss: 2.0546\n",
|
192 |
+
"Epoch 20/100\n",
|
193 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - accuracy: 0.6250 - loss: 2.0527\n",
|
194 |
+
"Epoch 21/100\n",
|
195 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - accuracy: 0.6250 - loss: 2.0508\n",
|
196 |
+
"Epoch 22/100\n",
|
197 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 0.6250 - loss: 2.0487\n",
|
198 |
+
"Epoch 23/100\n",
|
199 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.6250 - loss: 2.0464\n",
|
200 |
+
"Epoch 24/100\n",
|
201 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 0.6250 - loss: 2.0441\n",
|
202 |
+
"Epoch 25/100\n",
|
203 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 0.6250 - loss: 2.0415\n",
|
204 |
+
"Epoch 26/100\n",
|
205 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - accuracy: 0.6250 - loss: 2.0389\n",
|
206 |
+
"Epoch 27/100\n",
|
207 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - accuracy: 0.6250 - loss: 2.0361\n",
|
208 |
+
"Epoch 28/100\n",
|
209 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step - accuracy: 0.6250 - loss: 2.0331\n",
|
210 |
+
"Epoch 29/100\n",
|
211 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 0.6250 - loss: 2.0299\n",
|
212 |
+
"Epoch 30/100\n",
|
213 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - accuracy: 0.6250 - loss: 2.0265\n",
|
214 |
+
"Epoch 31/100\n",
|
215 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - accuracy: 0.6250 - loss: 2.0229\n",
|
216 |
+
"Epoch 32/100\n",
|
217 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - accuracy: 0.6250 - loss: 2.0191\n",
|
218 |
+
"Epoch 33/100\n",
|
219 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - accuracy: 0.6250 - loss: 2.0151\n",
|
220 |
+
"Epoch 34/100\n",
|
221 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step - accuracy: 0.6250 - loss: 2.0108\n",
|
222 |
+
"Epoch 35/100\n",
|
223 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.6250 - loss: 2.0062\n",
|
224 |
+
"Epoch 36/100\n",
|
225 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.6250 - loss: 2.0013\n",
|
226 |
+
"Epoch 37/100\n",
|
227 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.6250 - loss: 1.9961\n",
|
228 |
+
"Epoch 38/100\n",
|
229 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.6250 - loss: 1.9906\n",
|
230 |
+
"Epoch 39/100\n",
|
231 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - accuracy: 0.6250 - loss: 1.9848\n",
|
232 |
+
"Epoch 40/100\n",
|
233 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step - accuracy: 0.7500 - loss: 1.9785\n",
|
234 |
+
"Epoch 41/100\n",
|
235 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.8750 - loss: 1.9719\n",
|
236 |
+
"Epoch 42/100\n",
|
237 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step - accuracy: 0.8750 - loss: 1.9649\n",
|
238 |
+
"Epoch 43/100\n",
|
239 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 72ms/step - accuracy: 0.8750 - loss: 1.9574\n",
|
240 |
+
"Epoch 44/100\n",
|
241 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.8750 - loss: 1.9494\n",
|
242 |
+
"Epoch 45/100\n",
|
243 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 0.8750 - loss: 1.9410\n",
|
244 |
+
"Epoch 46/100\n",
|
245 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 0.8750 - loss: 1.9320\n",
|
246 |
+
"Epoch 47/100\n",
|
247 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step - accuracy: 0.8750 - loss: 1.9225\n",
|
248 |
+
"Epoch 48/100\n",
|
249 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.8750 - loss: 1.9123\n",
|
250 |
+
"Epoch 49/100\n",
|
251 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step - accuracy: 0.8750 - loss: 1.9016\n",
|
252 |
+
"Epoch 50/100\n",
|
253 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step - accuracy: 0.8750 - loss: 1.8902\n",
|
254 |
+
"Epoch 51/100\n",
|
255 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step - accuracy: 0.8750 - loss: 1.8781\n",
|
256 |
+
"Epoch 52/100\n",
|
257 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.8750 - loss: 1.8653\n",
|
258 |
+
"Epoch 53/100\n",
|
259 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.8750 - loss: 1.8517\n",
|
260 |
+
"Epoch 54/100\n",
|
261 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.8750 - loss: 1.8374\n",
|
262 |
+
"Epoch 55/100\n",
|
263 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step - accuracy: 0.8750 - loss: 1.8223\n",
|
264 |
+
"Epoch 56/100\n",
|
265 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7500 - loss: 1.8063\n",
|
266 |
+
"Epoch 57/100\n",
|
267 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.7500 - loss: 1.7895\n",
|
268 |
+
"Epoch 58/100\n",
|
269 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7500 - loss: 1.7718\n",
|
270 |
+
"Epoch 59/100\n",
|
271 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7500 - loss: 1.7532\n",
|
272 |
+
"Epoch 60/100\n",
|
273 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.7500 - loss: 1.7338\n",
|
274 |
+
"Epoch 61/100\n",
|
275 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.7500 - loss: 1.7134\n",
|
276 |
+
"Epoch 62/100\n",
|
277 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7500 - loss: 1.6922\n",
|
278 |
+
"Epoch 63/100\n",
|
279 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7500 - loss: 1.6701\n",
|
280 |
+
"Epoch 64/100\n",
|
281 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7500 - loss: 1.6471\n",
|
282 |
+
"Epoch 65/100\n",
|
283 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7500 - loss: 1.6233\n",
|
284 |
+
"Epoch 66/100\n",
|
285 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step - accuracy: 0.7500 - loss: 1.5988\n",
|
286 |
+
"Epoch 67/100\n",
|
287 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 69ms/step - accuracy: 0.7500 - loss: 1.5735\n",
|
288 |
+
"Epoch 68/100\n",
|
289 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 57ms/step - accuracy: 0.7500 - loss: 1.5476\n",
|
290 |
+
"Epoch 69/100\n",
|
291 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7500 - loss: 1.5211\n",
|
292 |
+
"Epoch 70/100\n",
|
293 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.7500 - loss: 1.4941\n",
|
294 |
+
"Epoch 71/100\n",
|
295 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7500 - loss: 1.4667\n",
|
296 |
+
"Epoch 72/100\n",
|
297 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7500 - loss: 1.4390\n",
|
298 |
+
"Epoch 73/100\n",
|
299 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.7500 - loss: 1.4110\n",
|
300 |
+
"Epoch 74/100\n",
|
301 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7500 - loss: 1.3829\n",
|
302 |
+
"Epoch 75/100\n",
|
303 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.7500 - loss: 1.3547\n",
|
304 |
+
"Epoch 76/100\n",
|
305 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7500 - loss: 1.3266\n",
|
306 |
+
"Epoch 77/100\n",
|
307 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 0.7500 - loss: 1.2986\n",
|
308 |
+
"Epoch 78/100\n",
|
309 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7500 - loss: 1.2707\n",
|
310 |
+
"Epoch 79/100\n",
|
311 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step - accuracy: 0.7500 - loss: 1.2430\n",
|
312 |
+
"Epoch 80/100\n",
|
313 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7500 - loss: 1.2157\n",
|
314 |
+
"Epoch 81/100\n",
|
315 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.8750 - loss: 1.1886\n",
|
316 |
+
"Epoch 82/100\n",
|
317 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 1.0000 - loss: 1.1618\n",
|
318 |
+
"Epoch 83/100\n",
|
319 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 1.0000 - loss: 1.1354\n",
|
320 |
+
"Epoch 84/100\n",
|
321 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 1.1093\n",
|
322 |
+
"Epoch 85/100\n",
|
323 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 1.0835\n",
|
324 |
+
"Epoch 86/100\n",
|
325 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 1.0000 - loss: 1.0581\n",
|
326 |
+
"Epoch 87/100\n",
|
327 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step - accuracy: 1.0000 - loss: 1.0330\n",
|
328 |
+
"Epoch 88/100\n",
|
329 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 55ms/step - accuracy: 1.0000 - loss: 1.0082\n",
|
330 |
+
"Epoch 89/100\n",
|
331 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 0.9838\n",
|
332 |
+
"Epoch 90/100\n",
|
333 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 1.0000 - loss: 0.9596\n",
|
334 |
+
"Epoch 91/100\n",
|
335 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 0.9357\n",
|
336 |
+
"Epoch 92/100\n",
|
337 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 1.0000 - loss: 0.9121\n",
|
338 |
+
"Epoch 93/100\n",
|
339 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 0.8888\n",
|
340 |
+
"Epoch 94/100\n",
|
341 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 1.0000 - loss: 0.8656\n",
|
342 |
+
"Epoch 95/100\n",
|
343 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 1.0000 - loss: 0.8427\n",
|
344 |
+
"Epoch 96/100\n",
|
345 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 1.0000 - loss: 0.8199\n",
|
346 |
+
"Epoch 97/100\n",
|
347 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 1.0000 - loss: 0.7974\n",
|
348 |
+
"Epoch 98/100\n",
|
349 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 1.0000 - loss: 0.7750\n",
|
350 |
+
"Epoch 99/100\n",
|
351 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 1.0000 - loss: 0.7527\n",
|
352 |
+
"Epoch 100/100\n",
|
353 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.7307\n"
|
354 |
+
]
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"data": {
|
358 |
+
"text/plain": [
|
359 |
+
"<keras.src.callbacks.history.History at 0x230194c7410>"
|
360 |
+
]
|
361 |
+
},
|
362 |
+
"execution_count": 4,
|
363 |
+
"metadata": {},
|
364 |
+
"output_type": "execute_result"
|
365 |
+
}
|
366 |
+
],
|
367 |
+
"source": [
|
368 |
+
" # LSTM Modeli Oluştur ve Eğit\n",
|
369 |
+
"from tensorflow.keras.models import Sequential\n",
|
370 |
+
"from tensorflow.keras.layers import Embedding, LSTM, Dense\n",
|
371 |
+
"\n",
|
372 |
+
"model = Sequential([\n",
|
373 |
+
" Embedding(input_dim=vocab_size, output_dim=16, input_length=X_pad.shape[1]),\n",
|
374 |
+
" LSTM(32),\n",
|
375 |
+
" Dense(num_classes, activation='softmax')\n",
|
376 |
+
"])\n",
|
377 |
+
"\n",
|
378 |
+
"model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n",
|
379 |
+
"model.fit(X_pad, y_encoded, epochs=100, verbose=1)\n"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"cell_type": "code",
|
384 |
+
"execution_count": 6,
|
385 |
+
"id": "f5d9bb8c-c4da-45f9-93d6-23f083368c05",
|
386 |
+
"metadata": {},
|
387 |
+
"outputs": [
|
388 |
+
{
|
389 |
+
"name": "stdout",
|
390 |
+
"output_type": "stream",
|
391 |
+
"text": [
|
392 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 165ms/step\n"
|
393 |
+
]
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"data": {
|
397 |
+
"text/plain": [
|
398 |
+
"'Hadouken'"
|
399 |
+
]
|
400 |
+
},
|
401 |
+
"execution_count": 6,
|
402 |
+
"metadata": {},
|
403 |
+
"output_type": "execute_result"
|
404 |
+
}
|
405 |
+
],
|
406 |
+
"source": [
|
407 |
+
"# Tahmin Fonksiyonu\n",
|
408 |
+
"\n",
|
409 |
+
"import numpy as np\n",
|
410 |
+
"\n",
|
411 |
+
"def predict_move(sequence_text):\n",
|
412 |
+
" seq = tokenizer.texts_to_sequences([sequence_text])\n",
|
413 |
+
" pad = pad_sequences(seq, maxlen=X_pad.shape[1], padding='post')\n",
|
414 |
+
" pred = model.predict(pad)\n",
|
415 |
+
" label = le.inverse_transform([np.argmax(pred)])\n",
|
416 |
+
" return label[0]\n",
|
417 |
+
"\n",
|
418 |
+
"# Örnek:\n",
|
419 |
+
"predict_move(\"DOWN,RIGHT,PUNCH\") # Hadouken\n"
|
420 |
+
]
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"cell_type": "code",
|
424 |
+
"execution_count": 7,
|
425 |
+
"id": "89a797c1-fa12-4552-951a-4dcede799be8",
|
426 |
+
"metadata": {},
|
427 |
+
"outputs": [],
|
428 |
+
"source": [
|
429 |
+
"model.save(\"joystick_move_model.keras\")\n"
|
430 |
+
]
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"cell_type": "code",
|
434 |
+
"execution_count": 8,
|
435 |
+
"id": "847f55ca-1b05-41f8-a0b8-57af26f1fb90",
|
436 |
+
"metadata": {},
|
437 |
+
"outputs": [],
|
438 |
+
"source": [
|
439 |
+
"import pickle\n",
|
440 |
+
"\n",
|
441 |
+
"# Tokenizer\n",
|
442 |
+
"with open(\"tokenizer.pkl\", \"wb\") as f:\n",
|
443 |
+
" pickle.dump(tokenizer, f)\n",
|
444 |
+
"\n",
|
445 |
+
"# LabelEncoder\n",
|
446 |
+
"with open(\"label_encoder.pkl\", \"wb\") as f:\n",
|
447 |
+
" pickle.dump(le, f)\n"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"cell_type": "code",
|
452 |
+
"execution_count": null,
|
453 |
+
"id": "a8343757-6301-49f2-894f-30ce3df0b601",
|
454 |
+
"metadata": {},
|
455 |
+
"outputs": [],
|
456 |
+
"source": []
|
457 |
+
}
|
458 |
+
],
|
459 |
+
"metadata": {
|
460 |
+
"kernelspec": {
|
461 |
+
"display_name": "Python 3 (ipykernel)",
|
462 |
+
"language": "python",
|
463 |
+
"name": "python3"
|
464 |
+
},
|
465 |
+
"language_info": {
|
466 |
+
"codemirror_mode": {
|
467 |
+
"name": "ipython",
|
468 |
+
"version": 3
|
469 |
+
},
|
470 |
+
"file_extension": ".py",
|
471 |
+
"mimetype": "text/x-python",
|
472 |
+
"name": "python",
|
473 |
+
"nbconvert_exporter": "python",
|
474 |
+
"pygments_lexer": "ipython3",
|
475 |
+
"version": "3.12.9"
|
476 |
+
}
|
477 |
+
},
|
478 |
+
"nbformat": 4,
|
479 |
+
"nbformat_minor": 5
|
480 |
+
}
|
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pickle
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
+
|
7 |
+
# Model ve yardımcı objeleri yükle
|
8 |
+
model = load_model("joystick_move_model.keras")
|
9 |
+
|
10 |
+
with open("tokenizer.pkl", "rb") as f:
|
11 |
+
tokenizer = pickle.load(f)
|
12 |
+
|
13 |
+
with open("label_encoder.pkl", "rb") as f:
|
14 |
+
label_encoder = pickle.load(f)
|
15 |
+
|
16 |
+
# Başlık
|
17 |
+
st.title("🎮 Street Fighter Combo Tahmin Edici")
|
18 |
+
st.write("Joystick sekansını girin (örn: DOWN,RIGHT,PUNCH)")
|
19 |
+
|
20 |
+
# Girdi
|
21 |
+
user_input = st.text_input("Joystick Kombinasyonu")
|
22 |
+
|
23 |
+
if st.button("Tahmin Et"):
|
24 |
+
if user_input:
|
25 |
+
seq = tokenizer.texts_to_sequences([user_input])
|
26 |
+
pad = pad_sequences(seq, maxlen=model.input_shape[1], padding='post')
|
27 |
+
prediction = model.predict(pad)
|
28 |
+
predicted_move = label_encoder.inverse_transform([np.argmax(prediction)])
|
29 |
+
st.success(f"🧠 Tahmin Edilen Hareket: **{predicted_move[0]}**")
|
30 |
+
else:
|
31 |
+
st.warning("Lütfen bir joystick sekansı girin.")
|
joystick_move_model.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c32b2cc79868a0382d7676868e74dc82742fc57da34d50c34b32da1165cf9ad8
|
3 |
+
size 107552
|
label_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13a3481a5f1602de9175c441d031624922af84c6dc641da86862f843ecfe2f78
|
3 |
+
size 348
|
projeözet.txt
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
✅ Proje Özeti: Street Fighter Move Recognizer
|
2 |
+
🎯 Amaç:
|
3 |
+
Joystick hareketlerine (örneğin: ⬇️➡️🅱️ gibi) bakarak oyuncunun hangi “özel hareketi” (Hadouken, Shoryuken vb.) yapmak istediğini tahmin eden bir model oluşturmak.
|
4 |
+
|
5 |
+
💡 Neden Özel?
|
6 |
+
Gerçek zamanlı joystick verilerini taklit ederek çalışır.
|
7 |
+
|
8 |
+
Sekans verisiyle çalışmak (zaman sıralı girişler).
|
9 |
+
|
10 |
+
Oyun zekâsı gibi davranmak: Oyuncu hangi hareketi yapıyor?
|
11 |
+
|
12 |
+
🛠️ Teknik Yaklaşım:
|
13 |
+
Aşama Açıklama
|
14 |
+
1. Veri Üretimi / Toplama Simüle joystick sekansları (örnek: ['DOWN', 'RIGHT', 'PUNCH']) ve bunların karşılığı özel hareket etiketi (Hadouken)
|
15 |
+
2. Veri İşleme Her combo bir sekans (sequence), veri X = ["DOWN", "RIGHT", "PUNCH"], y = "Hadouken" gibi olur
|
16 |
+
3. Modelleme
|
17 |
+
Seçenek 1: LSTM / GRU (sekans modelleme için)
|
18 |
+
Seçenek 2: 1D CNN (daha hızlı sonuçlar verir)
|
19 |
+
Seçenek 3: HMM (Hidden Markov Model, klasik çözüm)
|
20 |
+
4. Model Eğitimi %80 eğitim, %20 test — sınıflandırma problemi
|
21 |
+
5. Değerlendirme Accuracy, confusion matrix ile
|
22 |
+
6. Model Kaydı model.pkl veya .keras olarak
|
23 |
+
7. Streamlit Uygulaması Kullanıcıdan joystick sekansı al → model tahminini göster
|
24 |
+
8. Hugging Face config.json, README.md, model.pkl / .keras, sample_input.json
|
25 |
+
9. GitHub Notebook + app + model + README ile tam repo
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
📁 Örnek Combo Dataset (Simülasyon)
|
38 |
+
Joystick Sequence Move
|
39 |
+
["DOWN", "RIGHT", "PUNCH"] Hadouken
|
40 |
+
["RIGHT", "DOWN", "RIGHT", "KICK"] Shoryuken
|
41 |
+
["LEFT", "LEFT", "PUNCH"] Dash Punch
|
42 |
+
["DOWN", "KICK"] Low Kick
|
43 |
+
|
44 |
+
Toplam 5–10 özel hareket tanımıyla başlamak yeterli.
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
✅ Evet, Yapabiliriz:
|
53 |
+
✔ Model eğitimi (LSTM / CNN)
|
54 |
+
|
55 |
+
✔ Streamlit arayüz (combo tuşları seçtir → tahmini göster)
|
56 |
+
|
57 |
+
✔ Hugging Face'e yükleme
|
58 |
+
|
59 |
+
✔ GitHub'da paylaşım
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
tensorflow
|
3 |
+
scikit-learn
|
4 |
+
numpy
|
5 |
+
pandas
|
tokenizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5598ce21164b613f7d520d25eeafce1c27a18f54584193aa028914381b003b6b
|
3 |
+
size 500
|