Spaces:
Running
Running
File size: 13,760 Bytes
7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e a5bcfa7 7d8970e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# /scripts/data_explorer_treatment.py
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from pathlib import Path
import json
import numpy as np
from tqdm import tqdm
import re
def analyze_treatment_subset(
treatment_file_path,
emergency_keywords_path,
treatment_keywords_path,
output_dir="analysis_treatment"
):
"""
Specialized analysis for treatment subset focusing on:
1. Dual keyword analysis (emergency + treatment)
2. Path B effectiveness validation
3. Condition mapping data preparation
4. RAG readiness assessment
"""
print(f"\n{'='*60}")
print(f"Treatment Subset Analysis")
print(f"Treatment file: {treatment_file_path}")
print(f"Emergency keywords: {emergency_keywords_path}")
print(f"Treatment keywords: {treatment_keywords_path}")
print(f"Output directory: {output_dir}")
print(f"{'='*60}\n")
# Load data
print("1️⃣ Loading treatment subset data...")
df = pd.read_csv(treatment_file_path)
output_dir = Path(output_dir)
# Load keyword lists
print("2️⃣ Loading keyword lists...")
with open(emergency_keywords_path, 'r', encoding='utf-8') as f:
emergency_keywords = [line.strip() for line in f if line.strip()]
with open(treatment_keywords_path, 'r', encoding='utf-8') as f:
treatment_keywords = [line.strip() for line in f if line.strip()]
print(f" Emergency keywords: {len(emergency_keywords)}")
print(f" Treatment keywords: {len(treatment_keywords)}")
# Basic statistics
print("\n3️⃣ Computing basic statistics...")
total_records = len(df)
df['text_length'] = df['clean_text'].str.len()
avg_length = df['text_length'].mean()
print(f" Total treatment records: {total_records}")
print(f" Average text length: {avg_length:.2f} characters")
# Initialize comprehensive statistics
stats = {
'basic_statistics': {
'total_records': int(total_records),
'avg_text_length': float(avg_length),
'emergency_keywords_count': len(emergency_keywords),
'treatment_keywords_count': len(treatment_keywords)
},
'emergency_keyword_stats': {},
'treatment_keyword_stats': {},
'cooccurrence_analysis': {},
'path_b_validation': {},
'condition_mapping_candidates': {}
}
# Emergency keyword analysis in treatment subset
print("\n4️⃣ Analyzing emergency keywords in treatment subset...")
for keyword in emergency_keywords:
count = df['clean_text'].str.contains(keyword, case=False, na=False).sum()
stats['emergency_keyword_stats'][keyword] = int(count)
print(f" Emergency: {keyword} -> {count} records")
# Treatment keyword analysis
print("\n5️⃣ Analyzing treatment keywords...")
for keyword in treatment_keywords:
count = df['clean_text'].str.contains(keyword, case=False, na=False).sum()
stats['treatment_keyword_stats'][keyword] = int(count)
print(f" Treatment: {keyword} -> {count} records")
# Step 6: Co-occurrence analysis
print("\n6️⃣ Computing keyword co-occurrence patterns...")
# Initialize matrices for full dataset
emergency_matrix = np.zeros((len(df), len(emergency_keywords)), dtype=bool)
treatment_matrix = np.zeros((len(df), len(treatment_keywords)), dtype=bool)
# Pre-process text
print(" Pre-processing text...")
df['clean_text_lower'] = df['clean_text'].fillna('').str.lower()
# Process all emergency keywords
print("\n Processing all emergency keywords...")
for i, keyword in enumerate(tqdm(emergency_keywords, desc="Emergency keywords")):
pattern = r'(?<!\w)' + re.escape(keyword) + r'(?!\w)'
emergency_matrix[:, i] = df['clean_text_lower'].str.contains(pattern, regex=True, na=False)
matches = emergency_matrix[:, i].sum()
print(f" - {keyword}: {matches} matches")
# Process all treatment keywords
print("\n Processing all treatment keywords...")
for i, keyword in enumerate(tqdm(treatment_keywords, desc="Treatment keywords")):
pattern = r'(?<!\w)' + re.escape(keyword) + r'(?!\w)'
treatment_matrix[:, i] = df['clean_text_lower'].str.contains(pattern, regex=True, na=False)
matches = treatment_matrix[:, i].sum()
print(f" - {keyword}: {matches} matches")
# Compute co-occurrence matrix
print("\n Computing co-occurrence matrix...")
cooc_matrix = emergency_matrix.astype(int).T @ treatment_matrix.astype(int)
print(" Computation completed successfully")
# Extract results
print(" Extracting co-occurrence pairs...")
cooccurrence_pairs = []
for i, em_kw in enumerate(emergency_keywords):
for j, tr_kw in enumerate(treatment_keywords):
count = int(cooc_matrix[i, j])
if count > 0:
cooccurrence_pairs.append({
'emergency_keyword': em_kw,
'treatment_keyword': tr_kw,
'cooccurrence_count': count,
'percentage': float(count / len(df) * 100)
})
# Sort and store results
cooccurrence_pairs.sort(key=lambda x: x['cooccurrence_count'], reverse=True)
stats['cooccurrence_analysis'] = cooccurrence_pairs[:20] # Top 20 pairs
print(f" Found {len(cooccurrence_pairs)} co-occurrence pairs")
print(" Top 5 co-occurrence pairs:")
for i, pair in enumerate(cooccurrence_pairs[:5]):
print(f" {i+1}. {pair['emergency_keyword']} + {pair['treatment_keyword']}: {pair['cooccurrence_count']} ({pair['percentage']:.1f}%)")
# Step 7: Path B validation metrics
print("\n7️⃣ Validating Path B strategy effectiveness...")
# Compute keyword density with progress bar
print(" Computing keyword density...")
with tqdm(total=2, desc="Density calculation") as pbar:
emergency_density = emergency_matrix.sum(axis=1)
pbar.update(1)
treatment_density = treatment_matrix.sum(axis=1)
pbar.update(1)
# Store density in dataframe
df['emergency_keyword_density'] = emergency_density
df['treatment_keyword_density'] = treatment_density
# Calculate statistics
stats['path_b_validation'] = {
'avg_emergency_density': float(np.mean(emergency_density)),
'avg_treatment_density': float(np.mean(treatment_density)),
'high_density_records': int(sum((emergency_density >= 2) & (treatment_density >= 2))),
'precision_estimate': float(sum((emergency_density >= 1) & (treatment_density >= 1)) / len(df))
}
# Print detailed results
print("\n Results:")
print(f" - Average emergency keyword density: {stats['path_b_validation']['avg_emergency_density']:.2f}")
print(f" - Average treatment keyword density: {stats['path_b_validation']['avg_treatment_density']:.2f}")
print(f" - High-density records (≥2 each): {stats['path_b_validation']['high_density_records']}")
print(f" - Precision estimate: {stats['path_b_validation']['precision_estimate']:.2f}")
# Sample distribution analysis
print("\n Density Distribution:")
density_counts = pd.DataFrame({
'emergency': emergency_density,
'treatment': treatment_density
}).value_counts().head()
print(" Top 5 density combinations (emergency, treatment):")
for (em, tr), count in density_counts.items():
print(f" - {count} documents have {em} emergency and {tr} treatment keywords")
# Condition mapping candidates
print("\n8️⃣ Preparing condition mapping candidates...")
# Group emergency keywords by potential conditions
condition_candidates = {}
for pair in cooccurrence_pairs[:10]: # Top 10 pairs
em_kw = pair['emergency_keyword']
tr_kw = pair['treatment_keyword']
# Simple condition inference (can be enhanced later)
if any(cardiac_term in em_kw.lower() for cardiac_term in ['mi', 'cardiac', 'heart', 'chest']):
condition = 'cardiac'
elif any(resp_term in em_kw.lower() for resp_term in ['respiratory', 'breathing', 'lung', 'dyspnea']):
condition = 'respiratory'
elif any(neuro_term in em_kw.lower() for neuro_term in ['stroke', 'seizure', 'consciousness']):
condition = 'neurological'
else:
condition = 'general'
if condition not in condition_candidates:
condition_candidates[condition] = []
condition_candidates[condition].append({
'emergency_keyword': em_kw,
'treatment_keyword': tr_kw,
'strength': pair['cooccurrence_count']
})
stats['condition_mapping_candidates'] = condition_candidates
# Visualization
print("\n9️⃣ Generating visualizations...")
output_plots = output_dir / "plots"
output_plots.mkdir(parents=True, exist_ok=True)
# 1. Dual keyword distribution
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 8))
# Emergency keywords in treatment subset
em_counts = list(stats['emergency_keyword_stats'].values())
em_labels = list(stats['emergency_keyword_stats'].keys())
ax1.bar(range(len(em_labels)), em_counts)
ax1.set_title('Emergency Keywords in Treatment Subset')
ax1.set_xlabel('Emergency Keywords')
ax1.set_ylabel('Document Count')
ax1.tick_params(axis='x', rotation=45, labelsize=8)
ax1.set_xticks(range(len(em_labels)))
ax1.set_xticklabels(em_labels, ha='right')
# Treatment keywords
tr_counts = list(stats['treatment_keyword_stats'].values())
tr_labels = list(stats['treatment_keyword_stats'].keys())
ax2.bar(range(len(tr_labels)), tr_counts)
ax2.set_title('Treatment Keywords Distribution')
ax2.set_xlabel('Treatment Keywords')
ax2.set_ylabel('Document Count')
ax2.tick_params(axis='x', rotation=45, labelsize=8)
ax2.set_xticks(range(len(tr_labels)))
ax2.set_xticklabels(tr_labels, ha='right')
plt.tight_layout()
plt.savefig(output_plots / "dual_keyword_distribution.png", bbox_inches='tight', dpi=300)
plt.close()
# 2. Co-occurrence heatmap (top pairs)
if len(cooccurrence_pairs) > 0:
top_pairs = cooccurrence_pairs[:15] # Top 15 for readability
cooc_matrix = np.zeros((len(set([p['emergency_keyword'] for p in top_pairs])),
len(set([p['treatment_keyword'] for p in top_pairs]))))
em_unique = list(set([p['emergency_keyword'] for p in top_pairs]))
tr_unique = list(set([p['treatment_keyword'] for p in top_pairs]))
for pair in top_pairs:
i = em_unique.index(pair['emergency_keyword'])
j = tr_unique.index(pair['treatment_keyword'])
cooc_matrix[i, j] = pair['cooccurrence_count']
plt.figure(figsize=(12, 8))
sns.heatmap(cooc_matrix,
xticklabels=tr_unique,
yticklabels=em_unique,
annot=True,
fmt='g',
cmap='YlOrRd')
plt.title('Emergency-Treatment Keywords Co-occurrence Heatmap')
plt.xlabel('Treatment Keywords')
plt.ylabel('Emergency Keywords')
plt.xticks(rotation=45, ha='right')
plt.yticks(rotation=0)
plt.tight_layout()
plt.savefig(output_plots / "cooccurrence_heatmap.png", bbox_inches='tight', dpi=300)
plt.close()
# 3. Text length distribution
plt.figure(figsize=(10, 6))
df['text_length'].hist(bins=50, alpha=0.7)
plt.title('Text Length Distribution in Treatment Subset')
plt.xlabel('Text Length (characters)')
plt.ylabel('Frequency')
plt.axvline(avg_length, color='red', linestyle='--', label=f'Average: {avg_length:.0f}')
plt.legend()
plt.savefig(output_plots / "text_length_distribution.png", bbox_inches='tight')
plt.close()
# 4. Keyword density scatter plot
plt.figure(figsize=(10, 8))
plt.scatter(df['emergency_keyword_density'], df['treatment_keyword_density'], alpha=0.6)
plt.xlabel('Emergency Keyword Density')
plt.ylabel('Treatment Keyword Density')
plt.title('Emergency vs Treatment Keyword Density')
plt.grid(True, alpha=0.3)
plt.savefig(output_plots / "keyword_density_scatter.png", bbox_inches='tight')
plt.close()
# Save comprehensive statistics
print("\n🔟 Saving analysis results...")
stats_dir = output_dir / "stats"
stats_dir.mkdir(parents=True, exist_ok=True)
with open(stats_dir / "treatment_analysis_comprehensive.json", 'w', encoding='utf-8') as f:
json.dump(stats, f, indent=2, ensure_ascii=False)
# Save co-occurrence pairs as CSV for easy review
if cooccurrence_pairs:
cooc_df = pd.DataFrame(cooccurrence_pairs)
cooc_df.to_csv(stats_dir / "cooccurrence_pairs.csv", index=False)
print(f"✅ Treatment subset analysis complete!")
print(f" Results saved to: {output_dir}")
print(f" Plots: {output_plots}")
print(f" Statistics: {stats_dir}")
return stats
if __name__ == "__main__":
# Configuration
treatment_file = "../dataset/emergency_treatment/emergency_treatment_subset.csv"
emergency_keywords = "../keywords/emergency_keywords.txt"
treatment_keywords = "../keywords/treatment_keywords.txt"
output_directory = "../analysis_treatment"
# Run analysis
results = analyze_treatment_subset(
treatment_file,
emergency_keywords,
treatment_keywords,
output_directory
) |