Spaces:
Running
Running
File size: 10,050 Bytes
16ee1e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Model use
llm model: (for comparison) with our-own version.
https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B
https://huggingface.co/m42-health/Llama3-Med42-70B
evaluation model:
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
```python
"""
參閱 user_query.txt
"""
```
### 評估執行流程
```python
def run_complete_evaluation(model_name: str, test_cases: List[str]) -> Dict[str, Any]:
"""執行完整的六項指標評估"""
results = {
"model": model_name,
"metrics": {},
"detailed_results": []
}
total_latencies = []
extraction_successes = []
relevance_scores = []
coverage_scores = []
actionability_scores = []
evidence_scores = []
for query in test_cases:
# 運行模型並測量所有指標
start_time = time.time()
# 1. 總處理時長
latency_result = measure_total_latency(query)
total_latencies.append(latency_result['total_latency'])
# 2. 條件抽取成功率
extraction_result = evaluate_condition_extraction([query])
extraction_successes.append(extraction_result['success_rate'])
# 3 & 4. 檢索相關性和覆蓋率(需要實際檢索結果)
retrieval_results = get_retrieval_results(query)
relevance_result = evaluate_retrieval_relevance(retrieval_results)
relevance_scores.append(relevance_result['average_relevance'])
generated_advice = get_generated_advice(query, retrieval_results)
coverage_result = evaluate_retrieval_coverage(generated_advice, retrieval_results)
coverage_scores.append(coverage_result['coverage'])
# 5 & 6. LLM 評估(需要完整回應)
response_data = {
'query': query,
'advice': generated_advice,
'retrieval_results': retrieval_results
}
actionability_result = evaluate_clinical_actionability([response_data])
actionability_scores.append(actionability_result[0]['overall_score'])
evidence_result = evaluate_clinical_evidence([response_data])
evidence_scores.append(evidence_result[0]['overall_score'])
# 記錄詳細結果
results["detailed_results"].append({
"query": query,
"latency": latency_result,
"extraction": extraction_result,
"relevance": relevance_result,
"coverage": coverage_result,
"actionability": actionability_result[0],
"evidence": evidence_result[0]
})
# 計算平均指標
results["metrics"] = {
"average_latency": sum(total_latencies) / len(total_latencies),
"extraction_success_rate": sum(extraction_successes) / len(extraction_successes),
"average_relevance": sum(relevance_scores) / len(relevance_scores),
"average_coverage": sum(coverage_scores) / len(coverage_scores),
"average_actionability": sum(actionability_scores) / len(actionability_scores),
"average_evidence_score": sum(evidence_scores) / len(evidence_scores)
}
return results
```
---
## 📈 評估結果分析框架
### 統計分析
```python
def analyze_evaluation_results(results_A: Dict, results_B: Dict, results_C: Dict) -> Dict:
"""比較三個模型的評估結果"""
models = ['Med42-70B_direct', 'RAG_enhanced', 'OpenBioLLM-70B']
metrics = ['latency', 'extraction_success_rate', 'relevance', 'coverage', 'actionability', 'evidence_score']
comparison = {}
for metric in metrics:
comparison[metric] = {
models[0]: results_A['metrics'][f'average_{metric}'],
models[1]: results_B['metrics'][f'average_{metric}'],
models[2]: results_C['metrics'][f'average_{metric}']
}
# 計算相對改進
baseline = comparison[metric][models[0]]
rag_improvement = ((comparison[metric][models[1]] - baseline) / baseline) * 100
comparison[metric]['rag_improvement_percent'] = rag_improvement
return comparison
```
### 報告生成
```python
def generate_evaluation_report(comparison_results: Dict) -> str:
"""生成評估報告"""
report = f"""
# OnCall.ai 系統評估報告
## 評估摘要
| 指標 | Med42-70B | RAG增強版 | OpenBioLLM | RAG改進% |
|------|-----------|-----------|------------|----------|
| 處理時長 | {comparison_results['latency']['Med42-70B_direct']:.2f}s | {comparison_results['latency']['RAG_enhanced']:.2f}s | {comparison_results['latency']['OpenBioLLM-70B']:.2f}s | {comparison_results['latency']['rag_improvement_percent']:+.1f}% |
| 條件抽取成功率 | {comparison_results['extraction_success_rate']['Med42-70B_direct']:.1%} | {comparison_results['extraction_success_rate']['RAG_enhanced']:.1%} | {comparison_results['extraction_success_rate']['OpenBioLLM-70B']:.1%} | {comparison_results['extraction_success_rate']['rag_improvement_percent']:+.1f}% |
| 檢索相關性 | - | {comparison_results['relevance']['RAG_enhanced']:.3f} | - | - |
| 檢索覆蓋率 | - | {comparison_results['coverage']['RAG_enhanced']:.1%} | - | - |
| 臨床可操作性 | {comparison_results['actionability']['Med42-70B_direct']:.1f}/10 | {comparison_results['actionability']['RAG_enhanced']:.1f}/10 | {comparison_results['actionability']['OpenBioLLM-70B']:.1f}/10 | {comparison_results['actionability']['rag_improvement_percent']:+.1f}% |
| 臨床證據評分 | {comparison_results['evidence_score']['Med42-70B_direct']:.1f}/10 | {comparison_results['evidence_score']['RAG_enhanced']:.1f}/10 | {comparison_results['evidence_score']['OpenBioLLM-70B']:.1f}/10 | {comparison_results['evidence_score']['rag_improvement_percent']:+.1f}% |
"""
return report
```
---
## 🔧 實驗執行步驟
### 1. 環境準備
```bash
# 設置 HuggingFace token(用於 Inference Providers)
export HF_TOKEN=your_huggingface_token
# 設置評估模式
export ONCALL_EVAL_MODE=true
```
### 2. 實驗執行腳本框架
```python
# evaluation/run_evaluation.py
def main():
"""主要評估執行函數"""
# 加載測試用例
test_cases = MEDICAL_TEST_CASES
# 實驗 A: YanBo 系統評估
print("🔬 開始實驗 A: YanBo 系統評估")
results_med42_direct = run_complete_evaluation("Med42-70B_direct", test_cases)
results_general_rag = run_complete_evaluation("Med42-70B_general_RAG", test_cases)
results_openbio = run_complete_evaluation("OpenBioLLM-70B", test_cases)
# 分析和報告
comparison_A = analyze_evaluation_results(results_med42_direct, results_general_rag, results_openbio)
report_A = generate_evaluation_report(comparison_A)
# 保存結果
save_results("evaluation/results/yanbo_evaluation.json", {
"comparison": comparison_A,
"detailed_results": [results_med42_direct, results_general_rag, results_openbio]
})
print("✅ 實驗 A 完成,結果已保存")
# 實驗 B: Jeff 系統評估
print("🔬 開始實驗 B: Jeff 系統評估")
results_med42_direct_b = run_complete_evaluation("Med42-70B_direct", test_cases)
results_customized_rag = run_complete_evaluation("Med42-70B_customized_RAG", test_cases)
results_openbio_b = run_complete_evaluation("OpenBioLLM-70B", test_cases)
# 分析和報告
comparison_B = analyze_evaluation_results(results_med42_direct_b, results_customized_rag, results_openbio_b)
report_B = generate_evaluation_report(comparison_B)
# 保存結果
save_results("evaluation/results/jeff_evaluation.json", {
"comparison": comparison_B,
"detailed_results": [results_med42_direct_b, results_customized_rag, results_openbio_b]
})
print("✅ 實驗 B 完成,結果已保存")
if __name__ == "__main__":
main()
```
### 3. 預期評估時間
```
總評估時間估算:
├── 每個查詢處理時間:~30秒(包含LLM評估)
├── 測試用例數量:7個
├── 模型數量:3個
└── 總時間:~10-15分鐘每個實驗
```
---
## 📊 評估成功標準
### 系統性能目標
```
✅ 達標條件:
1. 總處理時長 ≤ 30秒
2. 條件抽取成功率 ≥ 80%
3. 檢索相關性 ≥ 0.2
4. 檢索覆蓋率 ≥ 60%
5. 臨床可操作性 ≥ 7.0/10
6. 臨床證據評分 ≥ 7.5/10
🎯 RAG 系統成功標準:
- RAG增強版在 4-6 項指標上優於基線 Med42-70B
- 整體提升幅度 ≥ 10%
```
### 比較分析重點
```
重點分析維度:
├── RAG 對處理時間的影響(可能增加延遲)
├── RAG 對回答質量的提升(可操作性和證據品質)
├── 不同 RAG 策略的效果差異(general vs customized)
└── 與其他醫學模型的競爭力比較
```
---
## 🛠️ 實施建議
### 分階段實施
```
階段1: 基礎指標實現(1-4項)
├── 利用現有 app.py 中的時間測量
├── 擴展 user_prompt.py 的條件抽取評估
├── 增強 retrieval.py 的相關性分析
└── 實現 generation.py 的覆蓋率計算
階段2: LLM評估實現(5-6項)
├── 設置 HuggingFace Inference Providers
├── 實現 Llama3-70B 評估客戶端
├── 測試評估 prompts 的穩定性
└── 建立評估結果解析邏輯
階段3: 完整實驗執行
├── 準備標準測試用例
├── 執行 YanBo 系統評估(實驗A)
├── 執行 Jeff 系統評估(實驗B)
└── 生成比較分析報告
```
### 實施注意事項
```
⚠️ 重要提醒:
1. 所有評估代碼應獨立於現有系統,避免影響正常運行
2. LLM 評估可能不穩定,建議多次運行取平均值
3. 注意 API 費用控制,特別是 Llama3-70B 調用
4. 保存詳細的中間結果,便於調試和分析
5. 測試用例應涵蓋不同複雜度和醫學領域
```
---
**評估指南完成。請根據此指南實施評估實驗。**
|