File size: 10,050 Bytes
16ee1e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Model use
llm model: (for comparison) with our-own version.
https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B
https://huggingface.co/m42-health/Llama3-Med42-70B

evaluation model:
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct

```python
"""
參閱 user_query.txt
"""
```


### 評估執行流程
```python
def run_complete_evaluation(model_name: str, test_cases: List[str]) -> Dict[str, Any]:
    """執行完整的六項指標評估"""
    
    results = {
        "model": model_name,
        "metrics": {},
        "detailed_results": []
    }
    
    total_latencies = []
    extraction_successes = []
    relevance_scores = []
    coverage_scores = []
    actionability_scores = []
    evidence_scores = []
    
    for query in test_cases:
        # 運行模型並測量所有指標
        start_time = time.time()
        
        # 1. 總處理時長
        latency_result = measure_total_latency(query)
        total_latencies.append(latency_result['total_latency'])
        
        # 2. 條件抽取成功率
        extraction_result = evaluate_condition_extraction([query])
        extraction_successes.append(extraction_result['success_rate'])
        
        # 3 & 4. 檢索相關性和覆蓋率(需要實際檢索結果)
        retrieval_results = get_retrieval_results(query)
        relevance_result = evaluate_retrieval_relevance(retrieval_results)
        relevance_scores.append(relevance_result['average_relevance'])
        
        generated_advice = get_generated_advice(query, retrieval_results)
        coverage_result = evaluate_retrieval_coverage(generated_advice, retrieval_results)
        coverage_scores.append(coverage_result['coverage'])
        
        # 5 & 6. LLM 評估(需要完整回應)
        response_data = {
            'query': query,
            'advice': generated_advice,
            'retrieval_results': retrieval_results
        }
        
        actionability_result = evaluate_clinical_actionability([response_data])
        actionability_scores.append(actionability_result[0]['overall_score'])
        
        evidence_result = evaluate_clinical_evidence([response_data])
        evidence_scores.append(evidence_result[0]['overall_score'])
        
        # 記錄詳細結果
        results["detailed_results"].append({
            "query": query,
            "latency": latency_result,
            "extraction": extraction_result,
            "relevance": relevance_result,
            "coverage": coverage_result,
            "actionability": actionability_result[0],
            "evidence": evidence_result[0]
        })
    
    # 計算平均指標
    results["metrics"] = {
        "average_latency": sum(total_latencies) / len(total_latencies),
        "extraction_success_rate": sum(extraction_successes) / len(extraction_successes),
        "average_relevance": sum(relevance_scores) / len(relevance_scores),
        "average_coverage": sum(coverage_scores) / len(coverage_scores),
        "average_actionability": sum(actionability_scores) / len(actionability_scores),
        "average_evidence_score": sum(evidence_scores) / len(evidence_scores)
    }
    
    return results
```

---

## 📈 評估結果分析框架

### 統計分析
```python
def analyze_evaluation_results(results_A: Dict, results_B: Dict, results_C: Dict) -> Dict:
    """比較三個模型的評估結果"""
    
    models = ['Med42-70B_direct', 'RAG_enhanced', 'OpenBioLLM-70B']
    metrics = ['latency', 'extraction_success_rate', 'relevance', 'coverage', 'actionability', 'evidence_score']
    
    comparison = {}
    
    for metric in metrics:
        comparison[metric] = {
            models[0]: results_A['metrics'][f'average_{metric}'],
            models[1]: results_B['metrics'][f'average_{metric}'],
            models[2]: results_C['metrics'][f'average_{metric}']
        }
        
        # 計算相對改進
        baseline = comparison[metric][models[0]]
        rag_improvement = ((comparison[metric][models[1]] - baseline) / baseline) * 100
        
        comparison[metric]['rag_improvement_percent'] = rag_improvement
    
    return comparison
```

### 報告生成
```python
def generate_evaluation_report(comparison_results: Dict) -> str:
    """生成評估報告"""
    
    report = f"""
    # OnCall.ai 系統評估報告
    
    ## 評估摘要
    
    | 指標 | Med42-70B | RAG增強版 | OpenBioLLM | RAG改進% |
    |------|-----------|-----------|------------|----------|
    | 處理時長 | {comparison_results['latency']['Med42-70B_direct']:.2f}s | {comparison_results['latency']['RAG_enhanced']:.2f}s | {comparison_results['latency']['OpenBioLLM-70B']:.2f}s | {comparison_results['latency']['rag_improvement_percent']:+.1f}% |
    | 條件抽取成功率 | {comparison_results['extraction_success_rate']['Med42-70B_direct']:.1%} | {comparison_results['extraction_success_rate']['RAG_enhanced']:.1%} | {comparison_results['extraction_success_rate']['OpenBioLLM-70B']:.1%} | {comparison_results['extraction_success_rate']['rag_improvement_percent']:+.1f}% |
    | 檢索相關性 | - | {comparison_results['relevance']['RAG_enhanced']:.3f} | - | - |
    | 檢索覆蓋率 | - | {comparison_results['coverage']['RAG_enhanced']:.1%} | - | - |
    | 臨床可操作性 | {comparison_results['actionability']['Med42-70B_direct']:.1f}/10 | {comparison_results['actionability']['RAG_enhanced']:.1f}/10 | {comparison_results['actionability']['OpenBioLLM-70B']:.1f}/10 | {comparison_results['actionability']['rag_improvement_percent']:+.1f}% |
    | 臨床證據評分 | {comparison_results['evidence_score']['Med42-70B_direct']:.1f}/10 | {comparison_results['evidence_score']['RAG_enhanced']:.1f}/10 | {comparison_results['evidence_score']['OpenBioLLM-70B']:.1f}/10 | {comparison_results['evidence_score']['rag_improvement_percent']:+.1f}% |
    
    """
    
    return report
```

---

## 🔧 實驗執行步驟

### 1. 環境準備
```bash
# 設置 HuggingFace token(用於 Inference Providers)
export HF_TOKEN=your_huggingface_token

# 設置評估模式
export ONCALL_EVAL_MODE=true
```

### 2. 實驗執行腳本框架
```python
# evaluation/run_evaluation.py
def main():
    """主要評估執行函數"""
    
    # 加載測試用例
    test_cases = MEDICAL_TEST_CASES
    
    # 實驗 A: YanBo 系統評估
    print("🔬 開始實驗 A: YanBo 系統評估")
    results_med42_direct = run_complete_evaluation("Med42-70B_direct", test_cases)
    results_general_rag = run_complete_evaluation("Med42-70B_general_RAG", test_cases)  
    results_openbio = run_complete_evaluation("OpenBioLLM-70B", test_cases)
    
    # 分析和報告
    comparison_A = analyze_evaluation_results(results_med42_direct, results_general_rag, results_openbio)
    report_A = generate_evaluation_report(comparison_A)
    
    # 保存結果
    save_results("evaluation/results/yanbo_evaluation.json", {
        "comparison": comparison_A,
        "detailed_results": [results_med42_direct, results_general_rag, results_openbio]
    })
    
    print("✅ 實驗 A 完成,結果已保存")
    
    # 實驗 B: Jeff 系統評估
    print("🔬 開始實驗 B: Jeff 系統評估")
    results_med42_direct_b = run_complete_evaluation("Med42-70B_direct", test_cases)
    results_customized_rag = run_complete_evaluation("Med42-70B_customized_RAG", test_cases)
    results_openbio_b = run_complete_evaluation("OpenBioLLM-70B", test_cases)
    
    # 分析和報告
    comparison_B = analyze_evaluation_results(results_med42_direct_b, results_customized_rag, results_openbio_b)
    report_B = generate_evaluation_report(comparison_B)
    
    # 保存結果
    save_results("evaluation/results/jeff_evaluation.json", {
        "comparison": comparison_B,
        "detailed_results": [results_med42_direct_b, results_customized_rag, results_openbio_b]
    })
    
    print("✅ 實驗 B 完成,結果已保存")

if __name__ == "__main__":
    main()
```

### 3. 預期評估時間
```
總評估時間估算:
├── 每個查詢處理時間:~30秒(包含LLM評估)
├── 測試用例數量:7個
├── 模型數量:3個
└── 總時間:~10-15分鐘每個實驗
```

---

## 📊 評估成功標準

### 系統性能目標
```
✅ 達標條件:
1. 總處理時長 ≤ 30秒
2. 條件抽取成功率 ≥ 80%  
3. 檢索相關性 ≥ 0.2
4. 檢索覆蓋率 ≥ 60%
5. 臨床可操作性 ≥ 7.0/10
6. 臨床證據評分 ≥ 7.5/10

🎯 RAG 系統成功標準:
- RAG增強版在 4-6 項指標上優於基線 Med42-70B
- 整體提升幅度 ≥ 10%
```

### 比較分析重點
```
重點分析維度:
├── RAG 對處理時間的影響(可能增加延遲)
├── RAG 對回答質量的提升(可操作性和證據品質)
├── 不同 RAG 策略的效果差異(general vs customized)
└── 與其他醫學模型的競爭力比較
```

---

## 🛠️ 實施建議

### 分階段實施
```
階段1: 基礎指標實現(1-4項)
├── 利用現有 app.py 中的時間測量
├── 擴展 user_prompt.py 的條件抽取評估
├── 增強 retrieval.py 的相關性分析
└── 實現 generation.py 的覆蓋率計算

階段2: LLM評估實現(5-6項)
├── 設置 HuggingFace Inference Providers
├── 實現 Llama3-70B 評估客戶端
├── 測試評估 prompts 的穩定性
└── 建立評估結果解析邏輯

階段3: 完整實驗執行
├── 準備標準測試用例
├── 執行 YanBo 系統評估(實驗A)
├── 執行 Jeff 系統評估(實驗B)
└── 生成比較分析報告
```

### 實施注意事項
```
⚠️ 重要提醒:
1. 所有評估代碼應獨立於現有系統,避免影響正常運行
2. LLM 評估可能不穩定,建議多次運行取平均值
3. 注意 API 費用控制,特別是 Llama3-70B 調用
4. 保存詳細的中間結果,便於調試和分析
5. 測試用例應涵蓋不同複雜度和醫學領域
```

---

**評估指南完成。請根據此指南實施評估實驗。**