Spaces:
Runtime error
Runtime error
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """TODO: Add a description here.""" | |
| import evaluate | |
| import datasets | |
| import pyarrow as pa | |
| from .coco_utils import CocoEvaluator, get_coco_api_from_dataset | |
| # TODO: Add BibTeX citation | |
| _CITATION = """\ | |
| @InProceedings{huggingface:module, | |
| title = {A great new module}, | |
| authors={huggingface, Inc.}, | |
| year={2020} | |
| } | |
| """ | |
| # TODO: Add description of the module here | |
| _DESCRIPTION = """\ | |
| This new module is designed to solve this great ML task and is crafted with a lot of care. | |
| """ | |
| # TODO: Add description of the arguments of the module here | |
| _KWARGS_DESCRIPTION = """ | |
| Calculates how good are predictions given some references, using certain scores | |
| Args: | |
| predictions: list of predictions to score. Each predictions | |
| should be a string with tokens separated by spaces. | |
| references: list of reference for each prediction. Each | |
| reference should be a string with tokens separated by spaces. | |
| Returns: | |
| accuracy: description of the first score, | |
| another_score: description of the second score, | |
| Examples: | |
| Examples should be written in doctest format, and should illustrate how | |
| to use the function. | |
| >>> my_new_module = evaluate.load("my_new_module") | |
| >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) | |
| >>> print(results) | |
| {'accuracy': 1.0} | |
| """ | |
| # TODO: Define external resources urls if needed | |
| BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" | |
| # lists - summarize long lists similarly to NumPy | |
| # arrays/tensors - let the frameworks control formatting | |
| def summarize_if_long_list(obj): | |
| if not type(obj) == list or len(obj) <= 6: | |
| return f"{obj}" | |
| def format_chunk(chunk): | |
| return ", ".join(repr(x) for x in chunk) | |
| return f"[{format_chunk(obj[:3])}, ..., {format_chunk(obj[-3:])}]" | |
| class COCOEvaluate(evaluate.Metric): | |
| """TODO: Short description of my evaluation module.""" | |
| def __init__(self, coco_dataset, iou_types=['bbox'], **kwargs): | |
| super().__init__(**kwargs) | |
| # self.coco_dataset = CocoDetection(coco_path, feature_extractor, annotation_path) | |
| self.coco_dataset = coco_dataset | |
| base_ds = get_coco_api_from_dataset(self.coco_dataset) | |
| self.coco_evaluator = CocoEvaluator(base_ds, iou_types) | |
| def _info(self): | |
| # TODO: Specifies the evaluate.EvaluationModuleInfo object | |
| return evaluate.MetricInfo( | |
| # This is the description that will appear on the modules page. | |
| module_type="metric", | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| inputs_description=_KWARGS_DESCRIPTION, | |
| # This defines the format of each prediction and reference | |
| features=datasets.Features({ | |
| 'predictions': [ | |
| datasets.Features( | |
| { | |
| 'scores': datasets.Sequence(datasets.Value("float")), | |
| 'labels': datasets.Sequence(datasets.Value("int64")), | |
| 'boxes': datasets.Sequence(datasets.Sequence(datasets.Value("float"))), | |
| }) | |
| ] | |
| , | |
| 'references': [ | |
| datasets.Features( | |
| { | |
| 'size': datasets.Sequence(datasets.Value("int64")), | |
| 'image_id': datasets.Sequence(datasets.Value("int64")), | |
| 'boxes': datasets.Sequence(datasets.Sequence(datasets.Value("float"))), | |
| 'class_labels': datasets.Sequence(datasets.Value("int64")), | |
| 'iscrowd': datasets.Sequence(datasets.Value("int64")), | |
| 'orig_size': datasets.Sequence(datasets.Value("int64")), | |
| 'area': datasets.Sequence(datasets.Value("int64")), | |
| } | |
| ) | |
| ], | |
| }), | |
| # Homepage of the module for documentation | |
| homepage="http://module.homepage", | |
| # Additional links to the codebase or references | |
| codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
| reference_urls=["http://path.to.reference.url/new_module"] | |
| ) | |
| def _download_and_prepare(self, dl_manager): | |
| """Optional: download external resources useful to compute the scores""" | |
| # TODO: Download external resources if needed | |
| pass | |
| def _preprocess(self, predictions): | |
| """Optional: preprocess the predictions and references before computing the scores""" | |
| processed_predictions = [] | |
| for pred in predictions: | |
| processed_pred = {} | |
| for key in pred.keys(): | |
| processed_pred[key] = pred[key].detach().cpu().tolist() | |
| processed_predictions.append(processed_pred) | |
| return processed_predictions | |
| def add(self, *, prediction=None, reference=None, **kwargs): | |
| """Preprocesses the predictions and references and calls the function of the parent class.""" | |
| if prediction is not None: | |
| prediction = self._preprocess(prediction) | |
| if reference is not None: | |
| reference = self._preprocess(reference) | |
| super().add(prediction=prediction, references=reference, **kwargs) | |
| def _compute(self, predictions, references): | |
| """Returns the scores""" | |
| for pred, ref in zip(predictions, references): | |
| res = {} | |
| for target, output in zip(ref, pred): | |
| res[target["image_id"][0]] = output | |
| self.coco_evaluator.update(res) | |
| self.coco_evaluator.synchronize_between_processes() | |
| self.coco_evaluator.accumulate() | |
| self.coco_evaluator.summarize() | |
| stats = self.coco_evaluator.get_results() | |
| return stats |