woundview / app.py
ybhavsar2009's picture
Update app.py
75a0851 verified
raw
history blame
18.4 kB
!pip install gradio
!pip install openai
!pip install PyPDF2
!pip install tiktoken
!pip install python-pptx
!apt-get install git
import gradio as gr
!git clone https://github.com/facebookresearch/segment-anything-2
%cd /content/segment-anything-2
!git checkout sam2.1
# Install the package
!pip install .
!wget -O sam2_hiera_tiny.pt "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt"
!wget -O sam2_hiera_small.pt "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt"
!wget -O sam2_hiera_base_plus.pt "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt"
!wget -O sam2_hiera_large.pt "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt"
import os
#import gradio as gr
import numpy as np
import pandas as pd
import cv2
import torch
import torch.nn as nn
from PIL import Image
import matplotlib.pyplot as plt
import seaborn as sns
from fastai.vision import *
from fastai.vision.all import *
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
import tensorflow as tf
import re
import json
import ast
import openai
import tiktoken
import shutil
import concurrent
import textwrap
from time import sleep
from csv import writer
from tqdm import tqdm
from scipy import spatial
from pptx import Presentation # for PowerPoint
from PyPDF2 import PdfReader
from openai import OpenAI
from IPython.display import display, Markdown, Latex, HTML
from transformers import GPT2Tokenizer
#from transformers import AutoTokenizer
from google.colab import files # for uploading files
from termcolor import colored # for colored text output
%matplotlib inline
%config InlineBackend.figure_format='retina'
%cd /content/segment-anything-2
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
sam2_checkpoint = "sam2_hiera_small.pt"
model_cfg = "sam2_hiera_s.yaml"
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
predictor = SAM2ImagePredictor(sam2_model)
checkpoint_path = "sam2_lr0.0001_wd0.01_900.torch"
predictor.model.load_state_dict(torch.load(checkpoint_path))
def display_thread(thread_id):
for message in client.beta.threads.messages.list(thread_id=thread_id):
display(message.content[0].text.value)
def read_file(filepath, max_pages=None):
if filepath.endswith('.pdf'):
return read_pdf(filepath, max_pages)
elif filepath.endswith('.txt'):
return read_text_file(filepath)
elif filepath.endswith('.docx'):
return read_docx(filepath)
elif filepath.endswith('.xlsx'):
return read_xlsx(filepath)
elif filepath.endswith('.pptx'):
return read_pptx(filepath)
else:
raise ValueError("Unsupported file type")
def read_pdf(filepath, max_pages=None):
reader = PdfReader(filepath)
pdf_text = ""
page_number = 0
for page in reader.pages:
page_number += 1
if max_pages and (page_number > max_pages):
break
page_text = page.extract_text()
# Check if page_text is None before proceeding
if page_text:
# Replace multiple newlines with a space to make it readable
page_text = re.sub(r'\n+', ' ', page_text)
pdf_text += page_text + f"\nPage Number: {page_number}\n"
else:
pdf_text += f"\n[No extractable text on Page {page_number}]\n"
return pdf_text
calc_similarity = lambda x, y: 1 - spatial.distance.cosine(x.data[0].embedding, y.data[0].embedding)
def pretty_print(df):
return display(HTML(df.to_html().replace("\\n", "<br>")))
def read_directory(directory):
assert os.path.exists(directory)
res_dict = {}
for filename in os.listdir(directory):
if filename.endswith(('pdf', 'txt', 'docx', 'pptx')):
filepath = os.path.join(directory, filename)
text = read_file(filepath, 2)
res_dict[filename] = (filepath, text)
df = pd.DataFrame(res_dict).T
df = df.reset_index()
df.columns = ["Filename", "Filepath", "Text"]
return df
# Initialize GPT tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.model_max_length = int(1e30)
def ask_chatbot(question, context, m):
max_context_tokens = 16385 # Adjust based on the maximum allowable context tokens
truncated_context = truncate_context(context, max_context_tokens)
response = client.chat.completions.create(
model=m,
messages=[
{"role": "system", "content": """You are an expert doctor who treats chronic wounds, and you know every single thing about wounds and how to treat them as well as preventing them from getting worse.
The user will provide the following inputs: Name, Gender, Age, Pre-existing Medical Conditions, Wound Part of Body, Wound Classficiation, Colors of the Wounds (as percents out of 100).
Please provide the medical advice in 2 concise paragraphs that must incorporate the following key features everytime:
1. **Wound Risk Score (1-100):** You will be given a PDF and you shall review it and use it to aid in your risk score generation. The wound risk score should be between 1-100! Of course, any color percentages **less than 3** shouldn't be taken into consideration when making the score.
**Make sure to be specific!**
2. **Medical Advice:** Give the patient bulleted directions on how to monitor and care for their wound. **Make sure to include if the person needs to go see a doctor as soon as possible.**"""},
{"role": "user", "content": truncated_context},
{"role": "user", "content": question}
]
)
return response.choices[0].message.content
def truncate_context(context, max_tokens):
tokens = tokenizer.encode(context)
if len(tokens) > max_tokens:
truncated_tokens = tokens[:max_tokens]
return tokenizer.decode(truncated_tokens)
return context
file_content = read_file("Wound Healing Risk Assessment.pdf")
api_key = "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" # @param {"type":"string"}
%env OPENAI_API_KEY = {api_key}
client = OpenAI()
model="gpt-4o-mini"
assistant = client.beta.assistants.create(
name="Wound Treater",
instructions="""You are an expert doctor who treats chronic wounds, and you know every single thing about wounds and how to treat them as well as preventing them from getting worse.
The user will provide the following inputs: Name, Gender, Age, Pre-existing Medical Conditions, Wound Part of Body, Wound Classficiation, Colors of the Wounds (as percents out of 100).
Please provide the medical advice in 2 concise paragraphs that must incorporate the following key features everytime:
1. **Wound Risk Score (1-100):** Generate a wound risk score from 1-100, 1 being no risk and 100 being going to see a medical professional immediately! Of course, any color percentages **less than 3** shouldn't be taken into consideration when making the score.
**Make sure to be specific and list the components of the wound risk score.**
2. **Medical Advice:** Give the patient directions on how to monitor and care for their wound. **Make sure to include if the person needs to go see a doctor as soon as possible.**""",
model=model)
def get_assistant_response(name="None", gender="None", age="None", conditions="None", bodyPart="None", typeWound="None", red="None", orange="None", yellow="None", magenta="None", white="None", gray="None", black="None"):
thread = client.beta.threads.create()
input_text = "Name: " + str(name) + ", Gender: " + str(gender) + ", Age: " + str(age) + ", Pre-Existing Medical Conditions: " + str(conditions) + ", Part of Body: " + str(bodyPart) + ", Type of Wound: " + str(typeWound) + ", Wound Colors (Red, Orange, Yellow, Magenta, White, Gray, Black): [" + str(red) + ", " + str(orange) + ", " + str(yellow) + ", " + str(magenta) + ", " + str(white) + ", " + str(gray) + ", " + str(black) + "]"
message = client.beta.threads.messages.create(
thread_id=thread.id,
role="user",
content=input_text)
run = client.beta.threads.runs.create(
thread_id=thread.id,
assistant_id=assistant.id,
)
sleep(15)
return input_text, client.beta.threads.messages.list(thread.id).data[0].content[0].text.value
def get_response_with_context(name="None", gender="None", age="None", conditions="None", bodyPart="None", typeWound="None", red="None", orange="None", yellow="None", magenta="None", white="None", gray="None", black="None"):
input_text = "Name: " + str(name) + ", Gender: " + str(gender) + ", Age: " + str(age) + ", Pre-Existing Medical Conditions: " + str(conditions) + ", Part of Body: " + str(bodyPart) + ", Type of Wound: " + str(typeWound) + ", Wound Colors (Red, Orange, Yellow, Magenta, White, Gray, Black): [" + str(red) + ", " + str(orange) + ", " + str(yellow) + ", " + str(magenta) + ", " + str(white) + ", " + str(gray) + ", " + str(black) + "]"
response = ask_chatbot(input_text, file_content, model)
return input_text, response
wounds = []
learn = load_learner('model.pkl')
def one_step_inference(image_path, threshold=0.5):
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
predictor.set_image(image)
high_res_features = [feat[-1].unsqueeze(0) for feat in predictor._features["high_res_feats"]]
with torch.no_grad():
sparse_embeddings, dense_embeddings = predictor.model.sam_prompt_encoder(points=None, boxes=None, masks=None)
low_res_masks, _, _, _ = predictor.model.sam_mask_decoder(
image_embeddings=predictor._features["image_embed"][-1].unsqueeze(0),
image_pe=predictor.model.sam_prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
repeat_image=False, # Fixed argument
high_res_features=high_res_features,)
mask = predictor._transforms.postprocess_masks(low_res_masks, predictor._orig_hw[-1])
final_mask = (mask > threshold).cpu().detach().numpy()[0][0]
final_mask = final_mask.astype("uint8")
selected_pixels = cv2.bitwise_and(image_rgb, image_rgb, mask=final_mask)
selected_pixels = image_hsv[final_mask == 1]
colors = classify_colors(selected_pixels)
return colors["Red"], colors["Orange"], colors["Yellow"], colors["Magenta"], colors["White"], colors["Gray"], colors["Black"]
# Replace this function in your original code
def classify_colors(hsv_pixels):
# Define color ranges in HSV
color_ranges = {
'Red': [(0, 50, 50), (10, 255, 255)], # Red wraps around
'Red2': [(170, 50, 50), (179, 255, 255)],
'Orange': [(11, 50, 50), (25, 255, 255)],
'Yellow': [(26, 50, 50), (35, 255, 255)],
'Green': [(36, 50, 50), (85, 255, 255)],
'Cyan': [(86, 50, 50), (95, 255, 255)],
'Blue': [(96, 50, 50), (130, 255, 255)],
'Purple': [(131, 50, 50), (160, 255, 255)],
'Magenta': [(161, 50, 50), (169, 255, 255)],
'White': [(0, 0, 200), (179, 55, 255)], # High brightness, low saturation
'Gray': [(0, 0, 50), (179, 50, 200)], # Low saturation, varying brightness
'Black': [(0, 0, 0), (179, 50, 50)] # Low brightness
}
# Flatten the HSV pixels to process as a single list
hsv_pixels = hsv_pixels.reshape(-1, 3)
# Initialize counts for each color
color_counts = {color: 0 for color in color_ranges}
# Total number of pixels
total_pixels = hsv_pixels.shape[0]
# Classify each pixel
for pixel in hsv_pixels:
h, s, v = pixel
for color, ranges in color_ranges.items():
if isinstance(ranges[0], tuple): # Handles multiple ranges (e.g., red)
lower = ranges[0]
upper = ranges[1]
if (lower[0] <= h <= upper[0] or lower[0] > upper[0] and (h >= lower[0] or h <= upper[0])) \
and lower[1] <= s <= upper[1] and lower[2] <= v <= upper[2]:
color_counts[color] += 1
break
else:
lower, upper = ranges
if lower[0] <= h <= upper[0] and lower[1] <= s <= upper[1] and lower[2] <= v <= upper[2]:
color_counts[color] += 1
break
# Calculate percentages
color_counts["Red"] += color_counts["Red2"]
del color_counts["Red2"]
if(total_pixels == 0):
total_pixels = 1
color_percentages = {color: (count / total_pixels) * 100 for color, count in color_counts.items()}
return color_percentages
def predict_image(image_path):
img = PILImage.create(image_path)
pred, pred_idx, probs = learn.predict(img)
return pred
def reveal_group():
return gr.update(visible=True)
def hide_group():
return gr.update(visible=False)
# Add new wound to the list
def add_wound(image, partOfBody):
wounds.append({"image": image, "description": partOfBody})
return image, partOfBody
def clear_inputs(image, partOfBody):
image=None
partOfBody=""
return image, partOfBody
# Initialize Gradio app
with gr.Blocks(theme=gr.themes.Glass()) as demo:
gr.Markdown("<center><h1>Welcome to WoundView!</h1></center>")
# Sign-up Group
with gr.Group() as sign_up:
gr.Markdown("<center><h2>New User</h2></center>")
name = gr.Textbox(label="Full Name", placeholder="Enter your name here...")
gender = gr.Radio(["Male", "Female"], label="Gender")
age = gr.Number(label="Age")
conditions = gr.CheckboxGroup(["Diabetes", "Peripheral Arterial Disease", "Venous Insufficiency", "Obesity", "Smoking", ], label="Pre-Existing Medical Conditions")
gr.Markdown("<span style='color: red;'>Some fields were left empty. Please fill them out!</span>", visible=False)
sign_up_btn = gr.Button(value="Sign Up", variant="secondary")
# Home Group
with gr.Group(visible=False) as home:
gr.Markdown("<center><h2>Wounds</h2></center>")
with gr.Row(visible=False) as wound_display:
wound_image = gr.Image()
with gr.Column():
wound_title = gr.Markdown("<center><h2>Wound Description</h2></center>")
with gr.Row():
gr.Markdown("<center>Part of Body:</center>")
wound_desc = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>Type of Wound:</center>")
wound_classification = gr.Textbox(container=False)
gr.Markdown("<center><h4>Colors:</h4></center>")
with gr.Row():
gr.Markdown("<center>Red:</center>")
red_percent = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>Orange:</center>")
orange_percent = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>Yellow:</center>")
yellow_percent = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>Magenta:</center>")
magenta_percent = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>White:</center>")
white_percent = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>Gray:</center>")
gray_percent = gr.Textbox(container=False)
with gr.Row():
gr.Markdown("<center>Black:</center>")
black_percent = gr.Textbox(container=False)
ai_chat_btn = gr.Button(value="AI ChatBot")
add_new_btn = gr.Button(value="Add New")
# Add New Group
with gr.Group(visible=False) as add_new:
gr.Markdown("<center><h2>Add New Wound</h2></center>")
with gr.Row():
image = gr.Image(label="Picture of wound", type="filepath")
partOfBody = gr.Radio(["Head", "Arm", "Hand", "Back", "Stomach", "Leg", "Foot"], label="What part of the body is the wound on?")
with gr.Row():
confirm_add_new_btn = gr.Button(value="Confirm")
cancel_add_new_btn = gr.Button(value="Cancel")
with gr.Group(visible=False) as ai_chat:
gr.Markdown("<center><h2>AI Chat</h2></center>")
with gr.Column() as gpt:
gr.Markdown("<center><h3>Chat GPT</h3></center>")
chatGPTInput = gr.Textbox(container=False)
chatGPTOutput = gr.Textbox(container=False)
cancel_ai_chat_btn = gr.Button(value="Cancel")
# Button Click Events
sign_up_btn.click(hide_group, outputs=sign_up).then(reveal_group, outputs=home)
add_new_btn.click(hide_group, outputs=home).then(reveal_group, outputs=add_new
).then(clear_inputs,
inputs=[image, partOfBody],
outputs=[image, partOfBody]
)
confirm_add_new_btn.click(add_wound,
inputs=[image, partOfBody],
outputs=[wound_image, wound_desc]
).then(reveal_group, outputs=home
).then(hide_group, outputs=add_new
).then(reveal_group, outputs=wound_display
).then(predict_image,
inputs=image,
outputs=wound_classification
).then(one_step_inference,
inputs=image,
outputs=[red_percent, orange_percent, yellow_percent, magenta_percent, white_percent, gray_percent, black_percent]
)
cancel_add_new_btn.click(hide_group, outputs=add_new).then(reveal_group, outputs=home)
ai_chat_btn.click(hide_group, outputs=home).then(reveal_group, outputs=ai_chat
).then(get_response_with_context,
inputs=[name, gender, age, conditions, partOfBody, wound_classification, red_percent, orange_percent, yellow_percent, magenta_percent, white_percent, gray_percent, black_percent],
outputs=[chatGPTInput, chatGPTOutput]
)
cancel_ai_chat_btn.click(hide_group, outputs=ai_chat).then(reveal_group, outputs=home)
demo.launch(share=True)