Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
#os.chdir("/home/user/app/segment-anything-2")
|
3 |
import urllib.request
|
4 |
|
5 |
model_urls = {
|
@@ -17,17 +16,11 @@ def download_models():
|
|
17 |
else:
|
18 |
print(f"{filename} already exists, skipping download.")
|
19 |
|
20 |
-
# Call it at startup
|
21 |
download_models()
|
22 |
|
23 |
-
"""wget -O sam2_hiera_tiny.pt "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt"
|
24 |
-
wget -O sam2_hiera_small.pt "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt"
|
25 |
-
wget -O sam2_hiera_base_plus.pt "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt"
|
26 |
-
wget -O sam2_hiera_large.pt "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt"
|
27 |
-
"""
|
28 |
-
|
29 |
-
#import os
|
30 |
import gradio as gr
|
|
|
|
|
31 |
import numpy as np
|
32 |
import pandas as pd
|
33 |
import cv2
|
@@ -58,24 +51,15 @@ from PyPDF2 import PdfReader
|
|
58 |
from openai import OpenAI
|
59 |
from IPython.display import display, Markdown, Latex, HTML
|
60 |
from transformers import GPT2Tokenizer
|
61 |
-
|
62 |
-
from termcolor import colored # for colored text output
|
63 |
-
|
64 |
-
#%matplotlib inline
|
65 |
-
#%config InlineBackend.figure_format='retina'
|
66 |
-
|
67 |
-
#os.chdir("segment-anything-2")
|
68 |
|
69 |
from sam2.build_sam import build_sam2
|
70 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
71 |
-
|
72 |
sam2_checkpoint = "sam2_hiera_small.pt"
|
73 |
model_cfg = "sam2_hiera_s.yaml"
|
74 |
-
|
75 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
76 |
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
|
77 |
predictor = SAM2ImagePredictor(sam2_model)
|
78 |
-
|
79 |
checkpoint_path = "sam2_lr0.0001_wd0.01_900.torch"
|
80 |
predictor.model.load_state_dict(torch.load(checkpoint_path, map_location=torch.device('cpu')))
|
81 |
|
@@ -107,9 +91,7 @@ def read_pdf(filepath, max_pages=None):
|
|
107 |
break
|
108 |
page_text = page.extract_text()
|
109 |
|
110 |
-
# Check if page_text is None before proceeding
|
111 |
if page_text:
|
112 |
-
# Replace multiple newlines with a space to make it readable
|
113 |
page_text = re.sub(r'\n+', ' ', page_text)
|
114 |
pdf_text += page_text + f"\nPage Number: {page_number}\n"
|
115 |
else:
|
@@ -144,7 +126,7 @@ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
|
144 |
tokenizer.model_max_length = int(1e30)
|
145 |
|
146 |
def ask_chatbot(question, context, m):
|
147 |
-
max_context_tokens = 16385
|
148 |
truncated_context = truncate_context(context, max_context_tokens)
|
149 |
response = client.chat.completions.create(
|
150 |
model=m,
|
@@ -232,7 +214,7 @@ def one_step_inference(image_path, threshold=0.5):
|
|
232 |
sparse_prompt_embeddings=sparse_embeddings,
|
233 |
dense_prompt_embeddings=dense_embeddings,
|
234 |
multimask_output=False,
|
235 |
-
repeat_image=False,
|
236 |
high_res_features=high_res_features,)
|
237 |
|
238 |
mask = predictor._transforms.postprocess_masks(low_res_masks, predictor._orig_hw[-1])
|
@@ -245,9 +227,7 @@ def one_step_inference(image_path, threshold=0.5):
|
|
245 |
|
246 |
return colors["Red"], colors["Orange"], colors["Yellow"], colors["Magenta"], colors["White"], colors["Gray"], colors["Black"]
|
247 |
|
248 |
-
# Replace this function in your original code
|
249 |
def classify_colors(hsv_pixels):
|
250 |
-
# Define color ranges in HSV
|
251 |
color_ranges = {
|
252 |
'Red': [(0, 50, 50), (10, 255, 255)], # Red wraps around
|
253 |
'Red2': [(170, 50, 50), (179, 255, 255)],
|
@@ -262,17 +242,13 @@ def classify_colors(hsv_pixels):
|
|
262 |
'Gray': [(0, 0, 50), (179, 50, 200)], # Low saturation, varying brightness
|
263 |
'Black': [(0, 0, 0), (179, 50, 50)] # Low brightness
|
264 |
}
|
265 |
-
# Flatten the HSV pixels to process as a single list
|
266 |
hsv_pixels = hsv_pixels.reshape(-1, 3)
|
267 |
-
# Initialize counts for each color
|
268 |
color_counts = {color: 0 for color in color_ranges}
|
269 |
-
# Total number of pixels
|
270 |
total_pixels = hsv_pixels.shape[0]
|
271 |
-
# Classify each pixel
|
272 |
for pixel in hsv_pixels:
|
273 |
h, s, v = pixel
|
274 |
for color, ranges in color_ranges.items():
|
275 |
-
if isinstance(ranges[0], tuple):
|
276 |
lower = ranges[0]
|
277 |
upper = ranges[1]
|
278 |
if (lower[0] <= h <= upper[0] or lower[0] > upper[0] and (h >= lower[0] or h <= upper[0])) \
|
@@ -284,7 +260,7 @@ def classify_colors(hsv_pixels):
|
|
284 |
if lower[0] <= h <= upper[0] and lower[1] <= s <= upper[1] and lower[2] <= v <= upper[2]:
|
285 |
color_counts[color] += 1
|
286 |
break
|
287 |
-
|
288 |
color_counts["Red"] += color_counts["Red2"]
|
289 |
del color_counts["Red2"]
|
290 |
if(total_pixels == 0):
|
@@ -304,7 +280,6 @@ def reveal_group():
|
|
304 |
def hide_group():
|
305 |
return gr.update(visible=False)
|
306 |
|
307 |
-
# Add new wound to the list
|
308 |
def add_wound(image, partOfBody):
|
309 |
wounds.append({"image": image, "description": partOfBody})
|
310 |
return image, partOfBody
|
@@ -314,8 +289,47 @@ def clear_inputs(image, partOfBody):
|
|
314 |
partOfBody=""
|
315 |
return image, partOfBody
|
316 |
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
gr.Markdown("<center><h1>Welcome to WoundView!</h1></center>")
|
320 |
|
321 |
# Sign-up Group
|
|
|
1 |
import os
|
|
|
2 |
import urllib.request
|
3 |
|
4 |
model_urls = {
|
|
|
16 |
else:
|
17 |
print(f"{filename} already exists, skipping download.")
|
18 |
|
|
|
19 |
download_models()
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
import gradio as gr
|
22 |
+
from gradio.themes.base import Base
|
23 |
+
from gradio.themes.utils import colors
|
24 |
import numpy as np
|
25 |
import pandas as pd
|
26 |
import cv2
|
|
|
51 |
from openai import OpenAI
|
52 |
from IPython.display import display, Markdown, Latex, HTML
|
53 |
from transformers import GPT2Tokenizer
|
54 |
+
from termcolor import colored
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
from sam2.build_sam import build_sam2
|
57 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
|
58 |
sam2_checkpoint = "sam2_hiera_small.pt"
|
59 |
model_cfg = "sam2_hiera_s.yaml"
|
|
|
60 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
61 |
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
|
62 |
predictor = SAM2ImagePredictor(sam2_model)
|
|
|
63 |
checkpoint_path = "sam2_lr0.0001_wd0.01_900.torch"
|
64 |
predictor.model.load_state_dict(torch.load(checkpoint_path, map_location=torch.device('cpu')))
|
65 |
|
|
|
91 |
break
|
92 |
page_text = page.extract_text()
|
93 |
|
|
|
94 |
if page_text:
|
|
|
95 |
page_text = re.sub(r'\n+', ' ', page_text)
|
96 |
pdf_text += page_text + f"\nPage Number: {page_number}\n"
|
97 |
else:
|
|
|
126 |
tokenizer.model_max_length = int(1e30)
|
127 |
|
128 |
def ask_chatbot(question, context, m):
|
129 |
+
max_context_tokens = 16385
|
130 |
truncated_context = truncate_context(context, max_context_tokens)
|
131 |
response = client.chat.completions.create(
|
132 |
model=m,
|
|
|
214 |
sparse_prompt_embeddings=sparse_embeddings,
|
215 |
dense_prompt_embeddings=dense_embeddings,
|
216 |
multimask_output=False,
|
217 |
+
repeat_image=False,
|
218 |
high_res_features=high_res_features,)
|
219 |
|
220 |
mask = predictor._transforms.postprocess_masks(low_res_masks, predictor._orig_hw[-1])
|
|
|
227 |
|
228 |
return colors["Red"], colors["Orange"], colors["Yellow"], colors["Magenta"], colors["White"], colors["Gray"], colors["Black"]
|
229 |
|
|
|
230 |
def classify_colors(hsv_pixels):
|
|
|
231 |
color_ranges = {
|
232 |
'Red': [(0, 50, 50), (10, 255, 255)], # Red wraps around
|
233 |
'Red2': [(170, 50, 50), (179, 255, 255)],
|
|
|
242 |
'Gray': [(0, 0, 50), (179, 50, 200)], # Low saturation, varying brightness
|
243 |
'Black': [(0, 0, 0), (179, 50, 50)] # Low brightness
|
244 |
}
|
|
|
245 |
hsv_pixels = hsv_pixels.reshape(-1, 3)
|
|
|
246 |
color_counts = {color: 0 for color in color_ranges}
|
|
|
247 |
total_pixels = hsv_pixels.shape[0]
|
|
|
248 |
for pixel in hsv_pixels:
|
249 |
h, s, v = pixel
|
250 |
for color, ranges in color_ranges.items():
|
251 |
+
if isinstance(ranges[0], tuple):
|
252 |
lower = ranges[0]
|
253 |
upper = ranges[1]
|
254 |
if (lower[0] <= h <= upper[0] or lower[0] > upper[0] and (h >= lower[0] or h <= upper[0])) \
|
|
|
260 |
if lower[0] <= h <= upper[0] and lower[1] <= s <= upper[1] and lower[2] <= v <= upper[2]:
|
261 |
color_counts[color] += 1
|
262 |
break
|
263 |
+
|
264 |
color_counts["Red"] += color_counts["Red2"]
|
265 |
del color_counts["Red2"]
|
266 |
if(total_pixels == 0):
|
|
|
280 |
def hide_group():
|
281 |
return gr.update(visible=False)
|
282 |
|
|
|
283 |
def add_wound(image, partOfBody):
|
284 |
wounds.append({"image": image, "description": partOfBody})
|
285 |
return image, partOfBody
|
|
|
289 |
partOfBody=""
|
290 |
return image, partOfBody
|
291 |
|
292 |
+
class CustomDarkGlass(Base):
|
293 |
+
def __init__(self):
|
294 |
+
super().__init__(
|
295 |
+
primary_hue=colors.blue,
|
296 |
+
secondary_hue=colors.slate,
|
297 |
+
neutral_hue=colors.gray,
|
298 |
+
font=[Base.fonts.SANS],
|
299 |
+
)
|
300 |
+
self.set(
|
301 |
+
# Backgrounds
|
302 |
+
body_background_fill="#1f2937", # dark slate / near-black
|
303 |
+
body_text_color="#ffffff", # white text
|
304 |
+
block_background_fill="#374151", # medium dark gray
|
305 |
+
block_border_color="#4b5563", # border gray
|
306 |
+
block_shadow=None,
|
307 |
+
block_title_text_color="#ffffff",
|
308 |
+
|
309 |
+
# Input components
|
310 |
+
input_background_fill="#4b5563", # slightly lighter
|
311 |
+
input_border_color="#6b7280", # input border gray
|
312 |
+
input_text_color="#ffffff", # white input text
|
313 |
+
|
314 |
+
# Buttons
|
315 |
+
button_primary_background_fill="#2563eb", # blue-600
|
316 |
+
button_primary_text_color="#ffffff",
|
317 |
+
button_secondary_background_fill="#4b5563",
|
318 |
+
button_secondary_text_color="#ffffff",
|
319 |
+
|
320 |
+
# Checkbox / Radio
|
321 |
+
checkbox_label_text_color="#ffffff",
|
322 |
+
checkbox_background_color_selected="#2563eb",
|
323 |
+
checkbox_border_color="#6b7280",
|
324 |
+
|
325 |
+
# Slider / Progress
|
326 |
+
slider_color="#2563eb",
|
327 |
+
progress_color="#2563eb",
|
328 |
+
)
|
329 |
+
|
330 |
+
theme = CustomDarkGlass()
|
331 |
+
|
332 |
+
with gr.Blocks(theme=theme) as demo:
|
333 |
gr.Markdown("<center><h1>Welcome to WoundView!</h1></center>")
|
334 |
|
335 |
# Sign-up Group
|