File size: 11,024 Bytes
fe5e03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from enum import Enum
from uuid import uuid4

import numpy as np
from qdrant_client import models
from qdrant_client import QdrantClient

from datasets import Dataset
from sentence_transformers import SentenceTransformer
from tqdm import tqdm

from hashlib import sha3_512


from src.backend.data_fetching.data_fetcher import DataFetcher, ChunkLevel


class QdrantSchema(str, Enum):
    COLLECTION_NAME: str

class ScientificPapersMainSchema(str, Enum):
    COLLECTION_NAME = "scientific-papers"
    ARTICLE_ID = "article_id"
    SECTIONS = "sections"
    SECTION_NAMES = "section_names"
    ABSTRACT = "abstract_text"

    def __repr__(self):
        return self.value

class ScientificPapersChunksSchema(str, Enum):
    COLLECTION_NAME = "scientific-paper-chunks"
    ARTICLE_ID = "article_id"
    SECTION_NAME = "section_name"
    PARAGRAPH_ID = "paragraph_id"
    PARAGRAPH = "paragraph"

    def __repr__(self):
        return self.value

class ScientificPapersCollectionNames(str, Enum):
    MAIN = "scientific-papers"
    CHUNKS = "scientific-paper-chunks"

    def __repr__(self):
        return self.value

class HFDatasetFields(str, Enum):
    SECTIONS = "sections"
    SECTION_NAMES = "section_names"
    ARTICLE_ID = "article_id"
    ABSTRACT = "article_abstract"
    EMBEDDINGS = "embeddings"

    def __repr__(self):
        return self.value

class QdrantDatabase:
    def __init__(self, client: QdrantClient, model: SentenceTransformer, upload_batch_size=2, embedding_batch_size=32, chunk_level: ChunkLevel = ChunkLevel.SENTENCE):
        self.client = client
        self.model = model
        self._embedding_batch_size = embedding_batch_size
        self._data_fetcher = DataFetcher(chunk_level=chunk_level)
        self.chunk_level = chunk_level
        self._upload_batch_size = upload_batch_size

        self._setup_collections()

    def _setup_collections(self):
        if not self.client.collection_exists(ScientificPapersCollectionNames.MAIN):
            self.client.create_collection(
                collection_name=ScientificPapersCollectionNames.MAIN,
                vectors_config=models.VectorParams(
                        size=self.model.get_sentence_embedding_dimension(),
                        distance=models.Distance.COSINE,
                        on_disk=True,
                ),
                optimizers_config=models.OptimizersConfigDiff(indexing_threshold=10000),
            )
        if not self.client.collection_exists(ScientificPapersCollectionNames.CHUNKS):
            self.client.create_collection(
                collection_name=ScientificPapersCollectionNames.CHUNKS,
                vectors_config=models.VectorParams(
                    size=self.model.get_sentence_embedding_dimension(),
                    distance=models.Distance.COSINE,
                    on_disk=True,
                ),
                optimizers_config=models.OptimizersConfigDiff(indexing_threshold=10000),
            )

    def reset_database(self):
        if self.client.collection_exists(ScientificPapersCollectionNames.MAIN):
            self.client.delete_collection(ScientificPapersCollectionNames.MAIN)
        if self.client.collection_exists(ScientificPapersCollectionNames.CHUNKS):
            self.client.delete_collection(ScientificPapersCollectionNames.CHUNKS)
        self._setup_collections()

    def upload_from_dataset(self, dataset: Dataset | list[dict], batch_size=2):
        data = self._data_fetcher.from_dataset(dataset)
        self._upload(data)

    def upload_from_pmcid(self, pmcid):
        data = self._data_fetcher.from_pmcid(pmcid)
        self._upload(data)

    def upload_from_pdf(self, file):
        data = self._data_fetcher.from_pdf(file)
        self._upload(data)

    def _prepare_batches(self, batch: list[dict]):
        unnest = lambda x: [j for i in x for j in i]
        # document embeddings for main collection
        if "embeddings" in batch[0]:
            article_embeddings_batch = [np.array(unnest(i[HFDatasetFields.EMBEDDINGS])) for i in batch]
            for doc_ind in range(len(batch)):
                batch[doc_ind].pop("embeddings")
        else:
            article_embeddings_batch = [
                self.model.encode(unnest(i[HFDatasetFields.SECTIONS]), device=str(self.model.device),
                                  batch_size=self._embedding_batch_size) for i in batch]
        document_vectors = [article_embeddings_batch[i].mean(axis=0) for i in range(len(batch))]

        # paragraph embeddings for chunk collection
        document_chunk_payload = [({
            ScientificPapersChunksSchema.ARTICLE_ID: article[HFDatasetFields.ARTICLE_ID],
            ScientificPapersChunksSchema.PARAGRAPH: paragraph,
            ScientificPapersChunksSchema.SECTION_NAME: section_name,
            ScientificPapersChunksSchema.PARAGRAPH_ID: paragraph_ind
        }) for article in batch for section_name, section in
            zip(article[HFDatasetFields.SECTION_NAMES], article[HFDatasetFields.SECTIONS])
            for paragraph_ind, paragraph in enumerate(section)]
        paragraph_embeddings = [paragraph_embeddings for article_paragraph_embeddings in
                                article_embeddings_batch for paragraph_embeddings in
                                article_paragraph_embeddings]

        ids = {
            ScientificPapersCollectionNames.MAIN: [
                int.from_bytes(sha3_512(i[HFDatasetFields.ARTICLE_ID].encode()).digest()[:8], 'little')
                for i in batch],
            ScientificPapersCollectionNames.CHUNKS: [str(uuid4()) for _ in
                                                     range(len(document_chunk_payload))],
        }

        main_upload = {"ids": ids[ScientificPapersCollectionNames.MAIN], "vectors": document_vectors, "payload": batch}
        chunk_upload = {"ids": ids[ScientificPapersCollectionNames.CHUNKS], "vectors": paragraph_embeddings, "payload": document_chunk_payload}

        return main_upload, chunk_upload

    def _upload(self, dataset: Dataset | list[dict]):
        def batched(iterable, n=100):
            from itertools import islice
            iterator = iter(iterable)
            while batch := list(islice(iterator, n)):
                yield batch
        with tqdm(total=len(dataset), desc=f"Upload data to Qdrant:{ScientificPapersCollectionNames.MAIN}: ") as pbar:
            for batch in batched(dataset, self._upload_batch_size):
                main_data, chunk_data = self._prepare_batches(batch)
                try:
                    self.client.upsert(collection_name=ScientificPapersCollectionNames.MAIN,
                                  points=models.Batch(
                                      ids=main_data["ids"],
                                      vectors=main_data["vectors"],
                                      payloads=main_data["payload"]
                                  ))

                    self.client.upsert(collection_name=ScientificPapersCollectionNames.CHUNKS,
                                  points=models.Batch(
                                      ids=chunk_data["ids"],
                                      vectors=chunk_data["vectors"],
                                      payloads=chunk_data["payload"]
                                  ))
                except Exception as e:
                    print(e)
                    pass
                pbar.update(self._upload_batch_size)

    def _bulk_upload(self, data: list[dict]):
        from qdrant_client import models
        self.client.update_collection(
            collection_name=ScientificPapersCollectionNames.MAIN,
            hnsw_config=models.HnswConfigDiff(m=0),
        )

        self.client.update_collection(
            collection_name=ScientificPapersCollectionNames.CHUNKS,
            hnsw_config=models.HnswConfigDiff(m=0),
        )

        self._upload(data)

        self.client.update_collection(
            collection_name=ScientificPapersCollectionNames.MAIN,
            hnsw_config=models.HnswConfigDiff(m=32),
        )

        self.client.update_collection(
            collection_name=ScientificPapersCollectionNames.CHUNKS,
            hnsw_config=models.HnswConfigDiff(m=32),
        )

    def _query_single(self, query: list[float] | np.ndarray, n_docs=1, n_paragraphs=1, highlight: bool = True):
        relevant_documents = self.client.query_points(ScientificPapersCollectionNames.MAIN,
                                                 query,
                                                 limit=n_docs,
                                                 with_vectors=False)

        relevant_paragraphs_per_document = {}

        if highlight:
            document_ids = [point.payload[ScientificPapersMainSchema.ARTICLE_ID] for point in relevant_documents.points]
            relevant_paragraphs_per_document = {}

            for document_id in document_ids:
                document_filter = models.Filter(
                    must=[
                        models.FieldCondition(key=ScientificPapersChunksSchema.ARTICLE_ID, match=models.MatchValue(value=document_id))
                    ]
                )
                relevant_paragraphs_ids_resp = self.client.query_points(ScientificPapersCollectionNames.CHUNKS,
                                                                   query,
                                                                   limit=n_paragraphs,
                                                                   with_payload=[
                                                                       ScientificPapersChunksSchema.PARAGRAPH_ID,
                                                                       ScientificPapersChunksSchema.SECTION_NAME,
                                                                       ScientificPapersChunksSchema.PARAGRAPH
                                                                   ],
                                                                   query_filter=document_filter)
                # relevant_paragraphs_ids = [point.payload["paragraph_index"] for point in relevant_paragraphs_ids_resp.points]
                relevant_paragraphs_per_document[document_id] = relevant_paragraphs_ids_resp

        return relevant_documents, relevant_paragraphs_per_document

    def query(self, queries: list[str] | str, docs_per_query=1, highlight=True, paragraphs_per_document=1):
        if isinstance(queries, str):
            queries = [queries]
        query_embeddings = self.model.encode(queries, batch_size=self._embedding_batch_size)

        responses = {}

        for query, query_embedding in zip(queries, query_embeddings):
            response = self._query_single(query_embedding,
                                          n_docs=docs_per_query,
                                          n_paragraphs=paragraphs_per_document,
                                          highlight=highlight)
            responses[query] = response

        return responses