File size: 6,937 Bytes
34ffddc
aa6782f
 
f77d097
a19e6cc
eb04357
aa6782f
 
 
34ffddc
f77d097
6af08b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca73d7
aa6782f
81fc7b1
aa6782f
eb04357
aa6782f
 
 
 
 
eb04357
6af08b9
 
c4e7abe
6af08b9
6b13d30
 
 
 
6af08b9
6b13d30
 
 
6af08b9
eb04357
6af08b9
eb04357
6af08b9
 
 
 
f601d69
6af08b9
f601d69
6af08b9
 
 
 
 
 
 
f601d69
 
 
 
 
6af08b9
 
aa6782f
 
 
 
 
 
 
 
 
6af08b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa6782f
 
6af08b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import torch
from threading import Thread
import gradio as gr
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor,TextIteratorStreamer,AutoTokenizer
from qwen_vl_utils import process_vision_info
import trimesh
from trimesh.exchange.gltf import export_glb
import numpy as np
import tempfile

def predict(_chatbot, task_history):
    chat_query = _chatbot[-1][0]
    query = task_history[-1][0]
    if len(chat_query) == 0:
        _chatbot.pop()
        task_history.pop()
        return _chatbot
    print("User: " + _parse_text(query))
    history_cp = copy.deepcopy(task_history)
    full_response = ""
    messages = []
    content = []
    for q, a in history_cp:
        if isinstance(q, (tuple, list)):
            if is_video_file(q[0]):
                content.append({'video': f'file://{q[0]}'})
            else:
                content.append({'image': f'file://{q[0]}'})
        else:
            content.append({'text': q})
            messages.append({'role': 'user', 'content': content})
            messages.append({'role': 'assistant', 'content': [{'text': a}]})
            content = []
    messages.pop()

    messages = _transform_messages(messages)
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(text=[text], images=image_inputs,
                        videos=video_inputs, padding=True, return_tensors='pt')
    inputs = inputs.to(model.device)

    streamer = TextIteratorStreamer(
        tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)

    gen_kwargs = {'max_new_tokens': 512, 'streamer': streamer, **inputs}

    thread = Thread(target=model.generate, kwargs=gen_kwargs)
    thread.start()

    #for new_text in streamer:
    #    yield new_text

    buffer = []
    for chunk in streamer:
        buffer.append(chunk)
        yield "".join(buffer)


def regenerate(_chatbot, task_history):
    if not task_history:
        return _chatbot
    item = task_history[-1]
    if item[1] is None:
        return _chatbot
    task_history[-1] = (item[0], None)
    chatbot_item = _chatbot.pop(-1)
    if chatbot_item[0] is None:
        _chatbot[-1] = (_chatbot[-1][0], None)
    else:
        _chatbot.append((chatbot_item[0], None))
    _chatbot_gen = predict(_chatbot, task_history)
    for _chatbot in _chatbot_gen:
        yield _chatbot

def add_text(history, task_history, text):
    task_text = text
    history = history if history is not None else []
    task_history = task_history if task_history is not None else []
    history = history + [(_parse_text(text), None)]
    task_history = task_history + [(task_text, None)]
    return history, task_history, ""

def add_file(history, task_history, file):
    history = history if history is not None else []
    task_history = task_history if task_history is not None else []
    history = history + [((file.name,), None)]
    task_history = task_history + [((file.name,), None)]
    return history, task_history

def reset_user_input():
    return gr.update(value="")

def reset_state(task_history):
    task_history.clear()
    return []

def _transform_messages(original_messages):
    transformed_messages = []
    for message in original_messages:
        new_content = []
        for item in message['content']:
            if 'image' in item:
                new_item = {'type': 'image', 'image': item['image']}
            elif 'text' in item:
                new_item = {'type': 'text', 'text': item['text']}
            elif 'video' in item:
                new_item = {'type': 'video', 'video': item['video']}
            else:
                continue
            new_content.append(new_item)

        new_message = {'role': message['role'], 'content': new_content}
        transformed_messages.append(new_message)

    return transformed_messages

# --------- Configuration & Model Loading ---------
MODEL_DIR = "Qwen/Qwen2.5-VL-3B-Instruct"
# Load processor, tokenizer, model for Qwen2.5-VL
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_DIR,
    torch_dtype=torch.float16,
    device_map="auto",
    trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(MODEL_DIR)
tokenizer = processor.tokenizer
#terminators = [tokenizer.eos_token_id]

def chat_qwen_vl(messages: str, history: list, temperature: float = 0.1, max_new_tokens: int = 1024):
    messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": messages},
                ],
            }
        ]
    messages = _transform_messages(messages)
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(text=[text], images=image_inputs,
                        videos=video_inputs, padding=True, return_tensors='pt')
    inputs = inputs.to(model.device)

    streamer = TextIteratorStreamer(
        tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)

    gen_kwargs = {'max_new_tokens': 512, 'streamer': streamer, **inputs}

    thread = Thread(target=model.generate, kwargs=gen_kwargs)
    thread.start()

    #for new_text in streamer:
    #    yield new_text

    buffer = []
    for chunk in streamer:
        buffer.append(chunk)
        yield "".join(buffer)


css = """
h1 { text-align: center; }
"""
PLACEHOLDER = (
    "<div style='padding:30px;text-align:center;display:flex;flex-direction:column;align-items:center;'>"
    "<h1 style='font-size:28px;opacity:0.55;'>Qwen2.5-VL Local Chat</h1>"
    "<p style='font-size:18px;opacity:0.65;'>Ask anything or generate images!</p></div>"
)

with gr.Blocks() as demo:
    gr.Markdown("""<center><font size=3> ShapeLLM-7B Demo </center>""")

    chatbot = gr.Chatbot(label='ShapeLLM-4o', elem_classes="control-height", height=500)
    query = gr.Textbox(lines=2, label='Input')
    task_history = gr.State([])

    with gr.Row():
        addfile_btn = gr.UploadButton("πŸ“ Upload (δΈŠδΌ ζ–‡δ»Ά)", file_types=["image", "video"])
        submit_btn = gr.Button("πŸš€ Submit (发送)")
        regen_btn = gr.Button("πŸ€”οΈ Regenerate (重试)")
        empty_bin = gr.Button("🧹 Clear History (ζΈ…ι™€εŽ†ε²)")

    submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(
        predict, [chatbot, task_history], [chatbot], show_progress=True
    )
    submit_btn.click(reset_user_input, [], [query])
    empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
    regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
    addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)
    

if __name__ == "__main__":
    demo.launch()