Spaces:
Runtime error
Runtime error
File size: 6,937 Bytes
34ffddc aa6782f f77d097 a19e6cc eb04357 aa6782f 34ffddc f77d097 6af08b9 bca73d7 aa6782f 81fc7b1 aa6782f eb04357 aa6782f eb04357 6af08b9 c4e7abe 6af08b9 6b13d30 6af08b9 6b13d30 6af08b9 eb04357 6af08b9 eb04357 6af08b9 f601d69 6af08b9 f601d69 6af08b9 f601d69 6af08b9 aa6782f 6af08b9 aa6782f 6af08b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
import torch
from threading import Thread
import gradio as gr
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor,TextIteratorStreamer,AutoTokenizer
from qwen_vl_utils import process_vision_info
import trimesh
from trimesh.exchange.gltf import export_glb
import numpy as np
import tempfile
def predict(_chatbot, task_history):
chat_query = _chatbot[-1][0]
query = task_history[-1][0]
if len(chat_query) == 0:
_chatbot.pop()
task_history.pop()
return _chatbot
print("User: " + _parse_text(query))
history_cp = copy.deepcopy(task_history)
full_response = ""
messages = []
content = []
for q, a in history_cp:
if isinstance(q, (tuple, list)):
if is_video_file(q[0]):
content.append({'video': f'file://{q[0]}'})
else:
content.append({'image': f'file://{q[0]}'})
else:
content.append({'text': q})
messages.append({'role': 'user', 'content': content})
messages.append({'role': 'assistant', 'content': [{'text': a}]})
content = []
messages.pop()
messages = _transform_messages(messages)
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(text=[text], images=image_inputs,
videos=video_inputs, padding=True, return_tensors='pt')
inputs = inputs.to(model.device)
streamer = TextIteratorStreamer(
tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {'max_new_tokens': 512, 'streamer': streamer, **inputs}
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
#for new_text in streamer:
# yield new_text
buffer = []
for chunk in streamer:
buffer.append(chunk)
yield "".join(buffer)
def regenerate(_chatbot, task_history):
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
_chatbot_gen = predict(_chatbot, task_history)
for _chatbot in _chatbot_gen:
yield _chatbot
def add_text(history, task_history, text):
task_text = text
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def add_file(history, task_history, file):
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
task_history.clear()
return []
def _transform_messages(original_messages):
transformed_messages = []
for message in original_messages:
new_content = []
for item in message['content']:
if 'image' in item:
new_item = {'type': 'image', 'image': item['image']}
elif 'text' in item:
new_item = {'type': 'text', 'text': item['text']}
elif 'video' in item:
new_item = {'type': 'video', 'video': item['video']}
else:
continue
new_content.append(new_item)
new_message = {'role': message['role'], 'content': new_content}
transformed_messages.append(new_message)
return transformed_messages
# --------- Configuration & Model Loading ---------
MODEL_DIR = "Qwen/Qwen2.5-VL-3B-Instruct"
# Load processor, tokenizer, model for Qwen2.5-VL
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_DIR,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(MODEL_DIR)
tokenizer = processor.tokenizer
#terminators = [tokenizer.eos_token_id]
def chat_qwen_vl(messages: str, history: list, temperature: float = 0.1, max_new_tokens: int = 1024):
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": messages},
],
}
]
messages = _transform_messages(messages)
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(text=[text], images=image_inputs,
videos=video_inputs, padding=True, return_tensors='pt')
inputs = inputs.to(model.device)
streamer = TextIteratorStreamer(
tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {'max_new_tokens': 512, 'streamer': streamer, **inputs}
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
#for new_text in streamer:
# yield new_text
buffer = []
for chunk in streamer:
buffer.append(chunk)
yield "".join(buffer)
css = """
h1 { text-align: center; }
"""
PLACEHOLDER = (
"<div style='padding:30px;text-align:center;display:flex;flex-direction:column;align-items:center;'>"
"<h1 style='font-size:28px;opacity:0.55;'>Qwen2.5-VL Local Chat</h1>"
"<p style='font-size:18px;opacity:0.65;'>Ask anything or generate images!</p></div>"
)
with gr.Blocks() as demo:
gr.Markdown("""<center><font size=3> ShapeLLM-7B Demo </center>""")
chatbot = gr.Chatbot(label='ShapeLLM-4o', elem_classes="control-height", height=500)
query = gr.Textbox(lines=2, label='Input')
task_history = gr.State([])
with gr.Row():
addfile_btn = gr.UploadButton("π Upload (δΈδΌ ζδ»Ά)", file_types=["image", "video"])
submit_btn = gr.Button("π Submit (ει)")
regen_btn = gr.Button("π€οΈ Regenerate (ιθ―)")
empty_bin = gr.Button("π§Ή Clear History (ζΈ
ι€εε²)")
submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(
predict, [chatbot, task_history], [chatbot], show_progress=True
)
submit_btn.click(reset_user_input, [], [query])
empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)
if __name__ == "__main__":
demo.launch() |