# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. import nncore from torch.utils.data import Dataset from videomind.dataset.hybrid import DATASETS from videomind.utils.parser import parse_query, parse_question @DATASETS.register(name='mlvu') class MLVUDataset(Dataset): TASK_TO_DIR_MAP = { 'plotQA': '1_plotQA', 'findNeedle': '2_needle', 'ego': '3_ego', 'count': '4_count', 'order': '5_order', 'anomaly_reco': '6_anomaly_reco', 'topic_reasoning': '7_topic_reasoning' } DATA_ROOT = 'data/mlvu' @classmethod def load_annos(self, split='test'): assert split == 'test' paths = [nncore.join(self.DATA_ROOT, 'json', f'{n}.json') for n in self.TASK_TO_DIR_MAP.values()] raw_annos = nncore.flatten([nncore.load(p) for p in paths]) annos = [] for raw_anno in raw_annos: task = raw_anno['question_type'] video_name = nncore.join(self.TASK_TO_DIR_MAP[task], raw_anno['video']) options = raw_anno['candidates'] answer = raw_anno['answer'] ans = chr(ord('A') + options.index(answer)) anno = dict( source='mlvu', data_type='multimodal', video_path=nncore.join(self.DATA_ROOT, 'video', video_name), query=parse_query(raw_anno['question']), question=parse_question(raw_anno['question']), options=options, answer=answer, ans=ans, task=task) annos.append(anno) return annos