Spaces:
Sleeping
Sleeping
main
Browse files- gradio_app.py +111 -87
gradio_app.py
CHANGED
|
@@ -12,61 +12,84 @@ from safetensors.torch import load_file
|
|
| 12 |
from networks import lora_flux
|
| 13 |
from library import flux_utils, flux_train_utils_recraft as flux_train_utils, strategy_flux
|
| 14 |
import logging
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Set up logger
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
logging.basicConfig(level=logging.DEBUG)
|
| 19 |
|
| 20 |
-
# Ensure necessary devices are available
|
| 21 |
-
print("torch.__version__: ", torch.__version__)
|
| 22 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
-
logger.info("device: {}".format(device))
|
| 24 |
-
|
| 25 |
accelerator = Accelerator(mixed_precision='bf16', device_placement=True)
|
| 26 |
|
| 27 |
-
# Model paths (replace these with your actual model paths)
|
| 28 |
-
BASE_FLUX_CHECKPOINT="/tiamat-NAS/songyiren/FYP/liucheng/sd-scripts/MergeModel/6_Portrait/6_Portrait.safetensors"
|
| 29 |
-
LORA_WEIGHTS_PATH="/tiamat-NAS/songyiren/FYP/liucheng/sd-scripts/RecraftModel/6_Portrait/6_Portrait-step00025000.safetensors"
|
| 30 |
-
CLIP_L_PATH="/tiamat-NAS/hailong/storage_backup/models/stabilityai/stable-diffusion-3-medium/text_encoders/clip_l.safetensors"
|
| 31 |
-
T5XXL_PATH="/tiamat-NAS/hailong/storage_backup/models/stabilityai/stable-diffusion-3-medium/text_encoders/t5xxl_fp16.safetensors"
|
| 32 |
-
AE_PATH="/tiamat-vePFS/share_data/storage/huggingface/models/black-forest-labs/FLUX.1-dev/ae.safetensors"
|
| 33 |
-
|
| 34 |
-
from huggingface_hub import login
|
| 35 |
hf_token = os.getenv("HF_TOKEN")
|
| 36 |
login(token=hf_token)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
BASE_FLUX_CHECKPOINT
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# Load model function
|
| 69 |
-
def load_target_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
logger.info("Loading models...")
|
| 71 |
try:
|
| 72 |
_, model = flux_utils.load_flow_model(
|
|
@@ -108,32 +131,36 @@ class ResizeWithPadding:
|
|
| 108 |
|
| 109 |
# The function to generate image from a prompt and conditional image
|
| 110 |
@spaces.GPU(duration=180)
|
| 111 |
-
def infer(prompt, sample_image, frame_num, seed=0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
logger.info(f"Started generating image with prompt: {prompt}")
|
| 113 |
-
|
| 114 |
-
# Load models
|
| 115 |
-
model, [clip_l, t5xxl], ae = load_target_model()
|
| 116 |
|
|
|
|
|
|
|
| 117 |
model.eval()
|
| 118 |
clip_l.eval()
|
| 119 |
t5xxl.eval()
|
| 120 |
ae.eval()
|
| 121 |
|
| 122 |
-
#
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
lora_model.
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
lora_model.
|
| 132 |
-
lora_model.
|
| 133 |
-
|
| 134 |
-
#
|
| 135 |
-
|
| 136 |
-
|
| 137 |
logger.debug(f"Using seed: {seed}")
|
| 138 |
|
| 139 |
# Preprocess the conditional image
|
|
@@ -199,9 +226,6 @@ def infer(prompt, sample_image, frame_num, seed=0, randomize_seed=False):
|
|
| 199 |
|
| 200 |
model.to(device)
|
| 201 |
|
| 202 |
-
# import pdb
|
| 203 |
-
# pdb.set_trace()
|
| 204 |
-
|
| 205 |
# Run the denoising process
|
| 206 |
with accelerator.autocast(), torch.no_grad():
|
| 207 |
x = flux_train_utils.denoise(
|
|
@@ -232,39 +256,39 @@ with gr.Blocks() as demo:
|
|
| 232 |
gr.Markdown("## FLUX Image Generation")
|
| 233 |
|
| 234 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
# Input for the prompt
|
| 236 |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=1)
|
| 237 |
-
|
| 238 |
# File upload for image
|
| 239 |
sample_image = gr.Image(label="Upload a Conditional Image", type="pil")
|
| 240 |
-
|
| 241 |
# Frame number selection
|
| 242 |
-
frame_num = gr.Radio([4, 9], label="Select Frame Number", value=
|
| 243 |
-
|
| 244 |
-
# Seed
|
| 245 |
seed = gr.Slider(0, np.iinfo(np.int32).max, step=1, label="Seed", value=0)
|
| 246 |
-
|
| 247 |
-
|
|
|
|
|
|
|
| 248 |
# Run Button
|
| 249 |
run_button = gr.Button("Generate Image")
|
| 250 |
-
|
| 251 |
# Output result
|
| 252 |
result_image = gr.Image(label="Generated Image")
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
)
|
| 259 |
|
| 260 |
# Launch the Gradio app
|
| 261 |
demo.launch()
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
# prompt = "1girl"
|
| 265 |
-
# sample_image = Image.open("/tiamat-NAS/songyiren/FYP/liucheng/sd-scripts/MergeModel/test/1.png") # 使用一个测试图像
|
| 266 |
-
# frame_num = 9
|
| 267 |
-
# seed = 42
|
| 268 |
-
# randomize_seed = False
|
| 269 |
-
# result = infer(prompt, sample_image, frame_num, seed, randomize_seed)
|
| 270 |
-
# result.save('asy_results/generated_image.png')
|
|
|
|
| 12 |
from networks import lora_flux
|
| 13 |
from library import flux_utils, flux_train_utils_recraft as flux_train_utils, strategy_flux
|
| 14 |
import logging
|
| 15 |
+
from huggingface_hub import login
|
| 16 |
+
from huggingface_hub import hf_hub_download
|
| 17 |
+
|
| 18 |
|
| 19 |
# Set up logger
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
logging.basicConfig(level=logging.DEBUG)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
accelerator = Accelerator(mixed_precision='bf16', device_placement=True)
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
hf_token = os.getenv("HF_TOKEN")
|
| 26 |
login(token=hf_token)
|
| 27 |
|
| 28 |
+
# Model paths dynamically retrieved using selected model
|
| 29 |
+
model_paths = {
|
| 30 |
+
'Wood Sculpture': {
|
| 31 |
+
'BASE_FLUX_CHECKPOINT': "Kijai/flux-fp8",
|
| 32 |
+
'BASE_FILE': "flux1-dev-fp8.safetensors",
|
| 33 |
+
'LORA_REPO': "showlab/makeanything",
|
| 34 |
+
'LORA_FILE': "recraft/recraft_4f_wood_sculpture.safetensors"
|
| 35 |
+
},
|
| 36 |
+
'LEGO': {
|
| 37 |
+
'BASE_FLUX_CHECKPOINT': "Kijai/flux-fp8",
|
| 38 |
+
'BASE_FILE': "flux1-dev-fp8.safetensors",
|
| 39 |
+
'LORA_REPO': "showlab/makeanything",
|
| 40 |
+
'LORA_FILE': "recraft/recraft_9f_lego.safetensors"
|
| 41 |
+
},
|
| 42 |
+
'Sketch': {
|
| 43 |
+
'BASE_FLUX_CHECKPOINT': "Kijai/flux-fp8",
|
| 44 |
+
'BASE_FILE': "flux1-dev-fp8.safetensors",
|
| 45 |
+
'LORA_REPO': "showlab/makeanything",
|
| 46 |
+
'LORA_FILE': "recraft/recraft_9f_sketch.safetensors"
|
| 47 |
+
},
|
| 48 |
+
'Portrait': {
|
| 49 |
+
'BASE_FLUX_CHECKPOINT': "Kijai/flux-fp8",
|
| 50 |
+
'BASE_FILE': "flux1-dev-fp8.safetensors",
|
| 51 |
+
'LORA_REPO': "showlab/makeanything",
|
| 52 |
+
'LORA_FILE': "recraft/recraft_9f_portrait.safetensors"
|
| 53 |
+
}
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
# Common paths
|
| 57 |
+
clip_repo_id = "comfyanonymous/flux_text_encoders"
|
| 58 |
+
t5xxl_file = "t5xxl_fp8_e4m3fn.safetensors"
|
| 59 |
+
clip_l_file = "clip_l.safetensors"
|
| 60 |
+
ae_repo_id = "black-forest-labs/FLUX.1-dev"
|
| 61 |
+
ae_file = "ae.safetensors"
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# Model placeholders
|
| 65 |
+
model = None
|
| 66 |
+
clip_l = None
|
| 67 |
+
t5xxl = None
|
| 68 |
+
ae = None
|
| 69 |
+
lora_model = None
|
| 70 |
+
|
| 71 |
+
# Function to load a file from Hugging Face Hub
|
| 72 |
+
def download_file(repo_id, file_name):
|
| 73 |
+
return hf_hub_download(repo_id=repo_id, filename=file_name)
|
| 74 |
|
| 75 |
# Load model function
|
| 76 |
+
def load_target_model(selected_model):
|
| 77 |
+
global model, clip_l, t5xxl, ae, lora_model
|
| 78 |
+
|
| 79 |
+
# Fetch paths based on the selected model
|
| 80 |
+
model_path = model_paths[selected_model]
|
| 81 |
+
base_checkpoint_repo = model_path['BASE_FLUX_CHECKPOINT']
|
| 82 |
+
base_checkpoint_file = model_path['BASE_FILE']
|
| 83 |
+
lora_repo = model_path['LORA_REPO']
|
| 84 |
+
lora_file = model_path['LORA_FILE']
|
| 85 |
+
|
| 86 |
+
# Download necessary files
|
| 87 |
+
BASE_FLUX_CHECKPOINT = download_file(base_checkpoint_repo, base_checkpoint_file)
|
| 88 |
+
CLIP_L_PATH = download_file(clip_repo_id, clip_l_file)
|
| 89 |
+
T5XXL_PATH = download_file(clip_repo_id, t5xxl_file)
|
| 90 |
+
AE_PATH = download_file(ae_repo_id, ae_file)
|
| 91 |
+
LORA_WEIGHTS_PATH = download_file(lora_repo, lora_file)
|
| 92 |
+
|
| 93 |
logger.info("Loading models...")
|
| 94 |
try:
|
| 95 |
_, model = flux_utils.load_flow_model(
|
|
|
|
| 131 |
|
| 132 |
# The function to generate image from a prompt and conditional image
|
| 133 |
@spaces.GPU(duration=180)
|
| 134 |
+
def infer(prompt, sample_image, frame_num, seed=0):
|
| 135 |
+
global model, clip_l, t5xxl, ae, lora_model
|
| 136 |
+
if model is None or lora_model is None or clip_l is None or t5xxl is None or ae is None:
|
| 137 |
+
logger.error("Models not loaded. Please load the models first.")
|
| 138 |
+
return None
|
| 139 |
+
|
| 140 |
logger.info(f"Started generating image with prompt: {prompt}")
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
lora_model.to("cuda")
|
| 143 |
+
|
| 144 |
model.eval()
|
| 145 |
clip_l.eval()
|
| 146 |
t5xxl.eval()
|
| 147 |
ae.eval()
|
| 148 |
|
| 149 |
+
# # Load models
|
| 150 |
+
# model, [clip_l, t5xxl], ae = load_target_model()
|
| 151 |
+
|
| 152 |
+
# # LoRA
|
| 153 |
+
# multiplier = 1.0
|
| 154 |
+
# weights_sd = load_file(LORA_WEIGHTS_PATH)
|
| 155 |
+
# lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd,
|
| 156 |
+
# True)
|
| 157 |
+
|
| 158 |
+
# lora_model.apply_to([clip_l, t5xxl], model)
|
| 159 |
+
# info = lora_model.load_state_dict(weights_sd, strict=True)
|
| 160 |
+
# logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
|
| 161 |
+
# lora_model.eval()
|
| 162 |
+
# lora_model.to(device)
|
| 163 |
+
|
| 164 |
logger.debug(f"Using seed: {seed}")
|
| 165 |
|
| 166 |
# Preprocess the conditional image
|
|
|
|
| 226 |
|
| 227 |
model.to(device)
|
| 228 |
|
|
|
|
|
|
|
|
|
|
| 229 |
# Run the denoising process
|
| 230 |
with accelerator.autocast(), torch.no_grad():
|
| 231 |
x = flux_train_utils.denoise(
|
|
|
|
| 256 |
gr.Markdown("## FLUX Image Generation")
|
| 257 |
|
| 258 |
with gr.Row():
|
| 259 |
+
# Dropdown for selecting the recraft model
|
| 260 |
+
recraft_model = gr.Dropdown(
|
| 261 |
+
label="Select Recraft Model",
|
| 262 |
+
choices=["Wood Sculpture", "LEGO", "Sketch", "Portrait"],
|
| 263 |
+
value="Wood Sculpture"
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
# Input for the prompt
|
| 267 |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=1)
|
| 268 |
+
|
| 269 |
# File upload for image
|
| 270 |
sample_image = gr.Image(label="Upload a Conditional Image", type="pil")
|
| 271 |
+
|
| 272 |
# Frame number selection
|
| 273 |
+
frame_num = gr.Radio([4, 9], label="Select Frame Number", value=4)
|
| 274 |
+
|
| 275 |
+
# Seed
|
| 276 |
seed = gr.Slider(0, np.iinfo(np.int32).max, step=1, label="Seed", value=0)
|
| 277 |
+
|
| 278 |
+
# Load Model Button
|
| 279 |
+
load_button = gr.Button("Load Model")
|
| 280 |
+
|
| 281 |
# Run Button
|
| 282 |
run_button = gr.Button("Generate Image")
|
| 283 |
+
|
| 284 |
# Output result
|
| 285 |
result_image = gr.Image(label="Generated Image")
|
| 286 |
|
| 287 |
+
# Load model button action
|
| 288 |
+
load_button.click(fn=load_target_model, inputs=[recraft_model], outputs=[])
|
| 289 |
+
|
| 290 |
+
# Run Button
|
| 291 |
+
run_button.click(fn=infer, inputs=[prompt, sample_image, frame_num, seed], outputs=[result_image])
|
| 292 |
|
| 293 |
# Launch the Gradio app
|
| 294 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|