Spaces:
Runtime error
Runtime error
Commit
·
508b842
1
Parent(s):
43b3c60
[Update] Add files and checkpoint
Browse files- .gitattributes +2 -0
- .gitignore +180 -0
- app.py +147 -0
- ckpt/content_encoder.pth +3 -0
- ckpt/style_encoder.pth +3 -0
- ckpt/unet.pth +3 -0
- configs/fontdiffuser.py +87 -0
- dataset/font_dataset.py +69 -0
- figures/ref_imgs/ref_/345/243/244.jpg +0 -0
- figures/ref_imgs/ref_/345/252/232.jpg +0 -0
- figures/ref_imgs/ref_/346/252/200.jpg +0 -0
- figures/ref_imgs/ref_/346/254/237.jpg +0 -0
- figures/ref_imgs/ref_/347/251/227.jpg +0 -0
- figures/ref_imgs/ref_/347/261/215.jpg +0 -0
- figures/ref_imgs/ref_/347/261/215_1.jpg +0 -0
- figures/ref_imgs/ref_/350/234/223.jpg +0 -0
- figures/ref_imgs/ref_/350/261/204.jpg +0 -0
- figures/ref_imgs/ref_/351/227/241.jpg +0 -0
- figures/ref_imgs/ref_/351/233/225.jpg +0 -0
- figures/ref_imgs/ref_/351/236/243.jpg +0 -0
- figures/ref_imgs/ref_/351/246/250.jpg +0 -0
- figures/ref_imgs/ref_/351/262/270.jpg +0 -0
- figures/ref_imgs/ref_/351/267/242.jpg +0 -0
- figures/ref_imgs/ref_/351/271/260.jpg +0 -0
- figures/source_imgs/source_/347/201/250.jpg +0 -0
- figures/source_imgs/source_/351/207/205.jpg +0 -0
- figures/source_imgs/source_/351/221/253.jpg +0 -0
- figures/source_imgs/source_/351/221/273.jpg +0 -0
- requirements.txt +5 -0
- sample.py +252 -0
- src/.DS_Store +0 -0
- src/__init__.py +11 -0
- src/build.py +64 -0
- src/criterion.py +44 -0
- src/dpm_solver/dpm_solver_pytorch.py +1332 -0
- src/dpm_solver/pipeline_dpm_solver.py +117 -0
- src/model.py +110 -0
- src/modules/__init__.py +3 -0
- src/modules/attention.py +414 -0
- src/modules/content_encoder.py +435 -0
- src/modules/embeddings.py +84 -0
- src/modules/resnet.py +353 -0
- src/modules/style_encoder.py +442 -0
- src/modules/unet.py +299 -0
- src/modules/unet_blocks.py +661 -0
- ttf/KaiXinSongA.ttf +3 -0
- ttf/KaiXinSongB.ttf +3 -0
- utils.py +123 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
ttf/KaiXinSongA.ttf filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
ttf/KaiXinSongB.ttf filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Initially taken from GitHub's Python gitignore file
|
| 2 |
+
outputs/
|
| 3 |
+
run_sh/
|
| 4 |
+
|
| 5 |
+
# Byte-compiled / optimized / DLL files
|
| 6 |
+
__pycache__/
|
| 7 |
+
*.py[cod]
|
| 8 |
+
*$py.class
|
| 9 |
+
|
| 10 |
+
# C extensions
|
| 11 |
+
*.so
|
| 12 |
+
|
| 13 |
+
# tests and logs
|
| 14 |
+
tests/fixtures/cached_*_text.txt
|
| 15 |
+
logs/
|
| 16 |
+
lightning_logs/
|
| 17 |
+
lang_code_data/
|
| 18 |
+
|
| 19 |
+
# Distribution / packaging
|
| 20 |
+
.Python
|
| 21 |
+
build/
|
| 22 |
+
develop-eggs/
|
| 23 |
+
dist/
|
| 24 |
+
downloads/
|
| 25 |
+
eggs/
|
| 26 |
+
.eggs/
|
| 27 |
+
lib/
|
| 28 |
+
lib64/
|
| 29 |
+
parts/
|
| 30 |
+
sdist/
|
| 31 |
+
var/
|
| 32 |
+
wheels/
|
| 33 |
+
*.egg-info/
|
| 34 |
+
.installed.cfg
|
| 35 |
+
*.egg
|
| 36 |
+
MANIFEST
|
| 37 |
+
|
| 38 |
+
# PyInstaller
|
| 39 |
+
# Usually these files are written by a Python script from a template
|
| 40 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 41 |
+
*.manifest
|
| 42 |
+
*.spec
|
| 43 |
+
|
| 44 |
+
# Installer logs
|
| 45 |
+
pip-log.txt
|
| 46 |
+
pip-delete-this-directory.txt
|
| 47 |
+
|
| 48 |
+
# Unit test / coverage reports
|
| 49 |
+
htmlcov/
|
| 50 |
+
.tox/
|
| 51 |
+
.nox/
|
| 52 |
+
.coverage
|
| 53 |
+
.coverage.*
|
| 54 |
+
.cache
|
| 55 |
+
nosetests.xml
|
| 56 |
+
coverage.xml
|
| 57 |
+
*.cover
|
| 58 |
+
.hypothesis/
|
| 59 |
+
.pytest_cache/
|
| 60 |
+
|
| 61 |
+
# Translations
|
| 62 |
+
*.mo
|
| 63 |
+
*.pot
|
| 64 |
+
|
| 65 |
+
# Django stuff:
|
| 66 |
+
*.log
|
| 67 |
+
local_settings.py
|
| 68 |
+
db.sqlite3
|
| 69 |
+
|
| 70 |
+
# Flask stuff:
|
| 71 |
+
instance/
|
| 72 |
+
.webassets-cache
|
| 73 |
+
|
| 74 |
+
# Scrapy stuff:
|
| 75 |
+
.scrapy
|
| 76 |
+
|
| 77 |
+
# Sphinx documentation
|
| 78 |
+
docs/_build/
|
| 79 |
+
|
| 80 |
+
# PyBuilder
|
| 81 |
+
target/
|
| 82 |
+
|
| 83 |
+
# Jupyter Notebook
|
| 84 |
+
.ipynb_checkpoints
|
| 85 |
+
|
| 86 |
+
# IPython
|
| 87 |
+
profile_default/
|
| 88 |
+
ipython_config.py
|
| 89 |
+
|
| 90 |
+
# pyenv
|
| 91 |
+
.python-version
|
| 92 |
+
|
| 93 |
+
# celery beat schedule file
|
| 94 |
+
celerybeat-schedule
|
| 95 |
+
|
| 96 |
+
# SageMath parsed files
|
| 97 |
+
*.sage.py
|
| 98 |
+
|
| 99 |
+
# Environments
|
| 100 |
+
.env
|
| 101 |
+
.venv
|
| 102 |
+
env/
|
| 103 |
+
venv/
|
| 104 |
+
ENV/
|
| 105 |
+
env.bak/
|
| 106 |
+
venv.bak/
|
| 107 |
+
|
| 108 |
+
# Spyder project settings
|
| 109 |
+
.spyderproject
|
| 110 |
+
.spyproject
|
| 111 |
+
|
| 112 |
+
# Rope project settings
|
| 113 |
+
.ropeproject
|
| 114 |
+
|
| 115 |
+
# mkdocs documentation
|
| 116 |
+
/site
|
| 117 |
+
|
| 118 |
+
# mypy
|
| 119 |
+
.mypy_cache/
|
| 120 |
+
.dmypy.json
|
| 121 |
+
dmypy.json
|
| 122 |
+
|
| 123 |
+
# Pyre type checker
|
| 124 |
+
.pyre/
|
| 125 |
+
|
| 126 |
+
# vscode
|
| 127 |
+
.vs
|
| 128 |
+
.vscode
|
| 129 |
+
|
| 130 |
+
# Pycharm
|
| 131 |
+
.idea
|
| 132 |
+
|
| 133 |
+
# TF code
|
| 134 |
+
tensorflow_code
|
| 135 |
+
|
| 136 |
+
# Models
|
| 137 |
+
proc_data
|
| 138 |
+
|
| 139 |
+
# examples
|
| 140 |
+
runs
|
| 141 |
+
/runs_old
|
| 142 |
+
/wandb
|
| 143 |
+
/examples/runs
|
| 144 |
+
/examples/**/*.args
|
| 145 |
+
/examples/rag/sweep
|
| 146 |
+
|
| 147 |
+
# data
|
| 148 |
+
/data
|
| 149 |
+
serialization_dir
|
| 150 |
+
|
| 151 |
+
# emacs
|
| 152 |
+
*.*~
|
| 153 |
+
debug.env
|
| 154 |
+
|
| 155 |
+
# vim
|
| 156 |
+
.*.swp
|
| 157 |
+
|
| 158 |
+
# ctags
|
| 159 |
+
tags
|
| 160 |
+
|
| 161 |
+
# pre-commit
|
| 162 |
+
.pre-commit*
|
| 163 |
+
|
| 164 |
+
# .lock
|
| 165 |
+
*.lock
|
| 166 |
+
|
| 167 |
+
# DS_Store (MacOS)
|
| 168 |
+
.DS_Store
|
| 169 |
+
|
| 170 |
+
# RL pipelines may produce mp4 outputs
|
| 171 |
+
*.mp4
|
| 172 |
+
|
| 173 |
+
# dependencies
|
| 174 |
+
/transformers
|
| 175 |
+
|
| 176 |
+
# ruff
|
| 177 |
+
.ruff_cache
|
| 178 |
+
|
| 179 |
+
# wandb
|
| 180 |
+
wandb
|
app.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from sample import (arg_parse,
|
| 4 |
+
sampling,
|
| 5 |
+
load_fontdiffuer_pipeline)
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def run_fontdiffuer(source_image,
|
| 9 |
+
character,
|
| 10 |
+
reference_image,
|
| 11 |
+
sampling_step,
|
| 12 |
+
guidance_scale,
|
| 13 |
+
batch_size):
|
| 14 |
+
args.character_input = False if source_image is not None else True
|
| 15 |
+
args.content_character = character
|
| 16 |
+
args.sampling_step = sampling_step
|
| 17 |
+
args.guidance_scale = guidance_scale
|
| 18 |
+
args.batch_size = batch_size
|
| 19 |
+
args.seed = random.randint(0, 10000)
|
| 20 |
+
out_image = sampling(
|
| 21 |
+
args=args,
|
| 22 |
+
pipe=pipe,
|
| 23 |
+
content_image=source_image,
|
| 24 |
+
style_image=reference_image)
|
| 25 |
+
return out_image
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
if __name__ == '__main__':
|
| 29 |
+
args = arg_parse()
|
| 30 |
+
args.demo = True
|
| 31 |
+
args.ckpt_dir = 'ckpt'
|
| 32 |
+
args.ttf_path = 'ttf/KaiXinSongA.ttf'
|
| 33 |
+
|
| 34 |
+
# load fontdiffuer pipeline
|
| 35 |
+
pipe = load_fontdiffuer_pipeline(args=args)
|
| 36 |
+
|
| 37 |
+
with gr.Blocks() as demo:
|
| 38 |
+
with gr.Row():
|
| 39 |
+
with gr.Column(scale=1):
|
| 40 |
+
gr.HTML("""
|
| 41 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
| 42 |
+
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
|
| 43 |
+
FontDiffuser
|
| 44 |
+
</h1>
|
| 45 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
| 46 |
+
<a href="https://yeungchenwa.github.io/"">Zhenhua Yang</a>,
|
| 47 |
+
<a href="https://scholar.google.com/citations?user=6zNgcjAAAAAJ&hl=zh-CN&oi=ao"">Dezhi Peng</a>,
|
| 48 |
+
Yuxin Kong, Yuyi Zhang,
|
| 49 |
+
<a href="https://scholar.google.com/citations?user=IpmnLFcAAAAJ&hl=zh-CN&oi=ao"">Cong Yao</a>,
|
| 50 |
+
<a href="http://www.dlvc-lab.net/lianwen/Index.html"">Lianwen Jin</a>†
|
| 51 |
+
</h2>
|
| 52 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
| 53 |
+
<strong>South China University of Technology</strong>, Alibaba DAMO Academy
|
| 54 |
+
</h2>
|
| 55 |
+
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
| 56 |
+
[<a href="https://github.com/yeungchenwa/FontDiffuser" style="color:blue;">arXiv</a>]
|
| 57 |
+
[<a href="https://github.com/yeungchenwa/FontDiffuser" style="color:green;">Github</a>]
|
| 58 |
+
</h3>
|
| 59 |
+
<h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
|
| 60 |
+
1.We propose FontDiffuser, which is capable to generate unseen characters and styles, and it can be extended to the cross-lingual generation, such as Chinese to Korean.
|
| 61 |
+
</h2>
|
| 62 |
+
<h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
|
| 63 |
+
2. FontDiffuser excels in generating complex character and handling large style variation. And it achieves state-of-the-art performance.
|
| 64 |
+
</h2>
|
| 65 |
+
</div>
|
| 66 |
+
""")
|
| 67 |
+
gr.Image('figures/result_vis.png')
|
| 68 |
+
gr.Image('figures/demo_tips.png')
|
| 69 |
+
with gr.Column(scale=1):
|
| 70 |
+
with gr.Row():
|
| 71 |
+
source_image = gr.Image(width=320, label='[Option 1] Source Image', image_mode='RGB', type='pil')
|
| 72 |
+
reference_image = gr.Image(width=320, label='Reference Image', image_mode='RGB', type='pil')
|
| 73 |
+
with gr.Row():
|
| 74 |
+
character = gr.Textbox(value='隆', label='[Option 2] Source Character')
|
| 75 |
+
with gr.Row():
|
| 76 |
+
fontdiffuer_output_image = gr.Image(height=200, label="FontDiffuser Output Image", image_mode='RGB', type='pil')
|
| 77 |
+
|
| 78 |
+
sampling_step = gr.Slider(20, 50, value=20, step=10,
|
| 79 |
+
label="Sampling Step", info="The sampling step by FontDiffuser.")
|
| 80 |
+
guidance_scale = gr.Slider(1, 12, value=7.5, step=0.5,
|
| 81 |
+
label="Scale of Classifier-free Guidance",
|
| 82 |
+
info="The scale used for classifier-free guidance sampling")
|
| 83 |
+
batch_size = gr.Slider(1, 4, value=1, step=1,
|
| 84 |
+
label="Batch Size", info="The number of images to be sampled.")
|
| 85 |
+
|
| 86 |
+
FontDiffuser = gr.Button('Run FontDiffuser')
|
| 87 |
+
gr.Markdown("## <font color=#008000, size=6>Examples that You Can Choose Below⬇️</font>")
|
| 88 |
+
with gr.Row():
|
| 89 |
+
gr.Markdown("## Examples")
|
| 90 |
+
with gr.Row():
|
| 91 |
+
with gr.Column(scale=1):
|
| 92 |
+
gr.Markdown("## Example 1️⃣: Source Image and Reference Image")
|
| 93 |
+
gr.Markdown("### In this mode, we provide both the source image and \
|
| 94 |
+
the reference image for you to try our demo!")
|
| 95 |
+
gr.Examples(
|
| 96 |
+
examples=[['figures/source_imgs/source_灨.jpg', 'figures/ref_imgs/ref_籍.jpg'],
|
| 97 |
+
['figures/source_imgs/source_鑻.jpg', 'figures/ref_imgs/ref_鹰.jpg'],
|
| 98 |
+
['figures/source_imgs/source_鑫.jpg', 'figures/ref_imgs/ref_壤.jpg'],
|
| 99 |
+
['figures/source_imgs/source_釅.jpg', 'figures/ref_imgs/ref_雕.jpg']],
|
| 100 |
+
inputs=[source_image, reference_image]
|
| 101 |
+
)
|
| 102 |
+
with gr.Column(scale=1):
|
| 103 |
+
gr.Markdown("## Example 2️⃣: Character and Reference Image")
|
| 104 |
+
gr.Markdown("### In this mode, we provide the content character and the reference image \
|
| 105 |
+
for you to try our demo!")
|
| 106 |
+
gr.Examples(
|
| 107 |
+
examples=[['龍', 'figures/ref_imgs/ref_鷢.jpg'],
|
| 108 |
+
['轉', 'figures/ref_imgs/ref_鲸.jpg'],
|
| 109 |
+
['懭', 'figures/ref_imgs/ref_籍_1.jpg'],
|
| 110 |
+
['識', 'figures/ref_imgs/ref_鞣.jpg']],
|
| 111 |
+
inputs=[character, reference_image]
|
| 112 |
+
)
|
| 113 |
+
with gr.Column(scale=1):
|
| 114 |
+
gr.Markdown("## Example 3️⃣: Reference Image")
|
| 115 |
+
gr.Markdown("### In this mode, we provide only the reference image, \
|
| 116 |
+
you can upload your own source image or you choose the character above \
|
| 117 |
+
to try our demo!")
|
| 118 |
+
gr.Examples(
|
| 119 |
+
examples=['figures/ref_imgs/ref_闡.jpg',
|
| 120 |
+
'figures/ref_imgs/ref_雕.jpg',
|
| 121 |
+
'figures/ref_imgs/ref_豄.jpg',
|
| 122 |
+
'figures/ref_imgs/ref_馨.jpg',
|
| 123 |
+
'figures/ref_imgs/ref_鲸.jpg',
|
| 124 |
+
'figures/ref_imgs/ref_檀.jpg',
|
| 125 |
+
'figures/ref_imgs/ref_鞣.jpg',
|
| 126 |
+
'figures/ref_imgs/ref_穗.jpg',
|
| 127 |
+
'figures/ref_imgs/ref_欟.jpg',
|
| 128 |
+
'figures/ref_imgs/ref_籍_1.jpg',
|
| 129 |
+
'figures/ref_imgs/ref_鷢.jpg',
|
| 130 |
+
'figures/ref_imgs/ref_媚.jpg',
|
| 131 |
+
'figures/ref_imgs/ref_籍.jpg',
|
| 132 |
+
'figures/ref_imgs/ref_壤.jpg',
|
| 133 |
+
'figures/ref_imgs/ref_蜓.jpg',
|
| 134 |
+
'figures/ref_imgs/ref_鹰.jpg'],
|
| 135 |
+
examples_per_page=20,
|
| 136 |
+
inputs=reference_image
|
| 137 |
+
)
|
| 138 |
+
FontDiffuser.click(
|
| 139 |
+
fn=run_fontdiffuer,
|
| 140 |
+
inputs=[source_image,
|
| 141 |
+
character,
|
| 142 |
+
reference_image,
|
| 143 |
+
sampling_step,
|
| 144 |
+
guidance_scale,
|
| 145 |
+
batch_size],
|
| 146 |
+
outputs=fontdiffuer_output_image)
|
| 147 |
+
demo.launch(debug=True)
|
ckpt/content_encoder.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e5b52582473579031bd0f935abbb9a3e5cb3727dccc25e75f77d1f41d3cbb3ff
|
| 3 |
+
size 4765643
|
ckpt/style_encoder.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82eb56abc37ebf7e662d1141a45d8a54ad4bc0ee8aa749c4bb7bc7bddb6cca46
|
| 3 |
+
size 82410027
|
ckpt/unet.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6bde1920ac8d843edbfffa6e6befedc5da39f753b927ce272cfc85cf99dcbfdb
|
| 3 |
+
size 315147685
|
configs/fontdiffuser.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import argparse
|
| 3 |
+
|
| 4 |
+
def get_parser():
|
| 5 |
+
parser = argparse.ArgumentParser(description="Training config for FontDiffuser.")
|
| 6 |
+
################# Experience #################
|
| 7 |
+
parser.add_argument("--seed", type=int, default=123, help="A seed for reproducible training.")
|
| 8 |
+
parser.add_argument("--experience_name", type=str, default="fontdiffuer_training")
|
| 9 |
+
parser.add_argument("--data_root", type=str, default=None,
|
| 10 |
+
help="The font dataset root path.",)
|
| 11 |
+
parser.add_argument("--output_dir", type=str, default=None,
|
| 12 |
+
help="The output directory where the model predictions and checkpoints will be written.")
|
| 13 |
+
parser.add_argument("--report_to", type=str, default="tensorboard")
|
| 14 |
+
parser.add_argument("--logging_dir", type=str, default="logs",
|
| 15 |
+
help=("[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
| 16 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."))
|
| 17 |
+
|
| 18 |
+
# Model
|
| 19 |
+
parser.add_argument("--resolution", type=int, default=96,
|
| 20 |
+
help="The resolution for input images, all the images in the train/validation \
|
| 21 |
+
dataset will be resized to this.")
|
| 22 |
+
parser.add_argument("--unet_channels", type=tuple, default=(64, 128, 256, 512),
|
| 23 |
+
help="The channels of the UNet.")
|
| 24 |
+
parser.add_argument("--style_image_size", type=int, default=96, help="The size of style images.")
|
| 25 |
+
parser.add_argument("--content_image_size", type=int, default=96, help="The size of content images.")
|
| 26 |
+
parser.add_argument("--content_encoder_downsample_size", type=int, default=3,
|
| 27 |
+
help="The downsample size of the content encoder.")
|
| 28 |
+
parser.add_argument("--channel_attn", type=bool, default=True, help="Whether to use the se attention.",)
|
| 29 |
+
parser.add_argument("--content_start_channel", type=int, default=64,
|
| 30 |
+
help="The channels of the fisrt layer output of content encoder.",)
|
| 31 |
+
parser.add_argument("--style_start_channel", type=int, default=64,
|
| 32 |
+
help="The channels of the fisrt layer output of content encoder.",)
|
| 33 |
+
|
| 34 |
+
# Training
|
| 35 |
+
parser.add_argument("--train_batch_size", type=int, default=4,
|
| 36 |
+
help="Batch size (per device) for the training dataloader.")
|
| 37 |
+
## loss coefficient
|
| 38 |
+
parser.add_argument("--perceptual_coefficient", type=float, default=0.01)
|
| 39 |
+
parser.add_argument("--offset_coefficient", type=float, default=0.5)
|
| 40 |
+
## step
|
| 41 |
+
parser.add_argument("--max_train_steps", type=int, default=440000,
|
| 42 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",)
|
| 43 |
+
parser.add_argument("--ckpt_interval", type=int,default=40000, help="The step begin to validate.")
|
| 44 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
|
| 45 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",)
|
| 46 |
+
parser.add_argument("--log_interval", type=int, default=100, help="The log interval of training.")
|
| 47 |
+
## learning rate
|
| 48 |
+
parser.add_argument("--learning_rate", type=float, default=1e-4,
|
| 49 |
+
help="Initial learning rate (after the potential warmup period) to use.")
|
| 50 |
+
parser.add_argument("--scale_lr", action="store_true", default=False,
|
| 51 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.")
|
| 52 |
+
parser.add_argument("--lr_scheduler", type=str, default="linear",
|
| 53 |
+
help="The scheduler type to use. Choose between 'linear', 'cosine', \
|
| 54 |
+
'cosine_with_restarts', 'polynomial', 'constant', 'constant_with_warmup'")
|
| 55 |
+
parser.add_argument("--lr_warmup_steps", type=int, default=10000,
|
| 56 |
+
help="Number of steps for the warmup in the lr scheduler.")
|
| 57 |
+
## classifier-free
|
| 58 |
+
parser.add_argument("--drop_prob", type=float, default=0.1, help="The uncondition training drop out probability.")
|
| 59 |
+
## scheduler
|
| 60 |
+
parser.add_argument("--beta_scheduler", type=str, default="scaled_linear", help="The beta scheduler for DDPM.")
|
| 61 |
+
## optimizer
|
| 62 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
| 63 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
| 64 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
| 65 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
| 66 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
| 67 |
+
|
| 68 |
+
parser.add_argument("--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"],
|
| 69 |
+
help="Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires \
|
| 70 |
+
PyTorch >= 1.10. and an Nvidia Ampere GPU.")
|
| 71 |
+
|
| 72 |
+
# Sampling
|
| 73 |
+
parser.add_argument("--algorithm_type", type=str, default="dpmsolver++", help="Algorithm for sampleing.")
|
| 74 |
+
parser.add_argument("--guidance_type", type=str, default="classifier-free", help="Guidance type of sampling.")
|
| 75 |
+
parser.add_argument("--guidance_scale", type=float, default=7.5, help="Guidance scale of the classifier-free mode.")
|
| 76 |
+
parser.add_argument("--num_inference_steps", type=int, default=20, help="Sampling step.")
|
| 77 |
+
parser.add_argument("--model_type", type=str, default="noise", help="model_type for sampling.")
|
| 78 |
+
parser.add_argument("--order", type=int, default=2, help="The order of the dpmsolver.")
|
| 79 |
+
parser.add_argument("--skip_type", type=str, default="time_uniform", help="Skip type of dpmsolver.")
|
| 80 |
+
parser.add_argument("--method", type=str, default="multistep", help="Multistep of dpmsolver.")
|
| 81 |
+
parser.add_argument("--correcting_x0_fn", type=str, default=None, help="correcting_x0_fn of dpmsolver.")
|
| 82 |
+
parser.add_argument("--t_start", type=str, default=None, help="t_start of dpmsolver.")
|
| 83 |
+
parser.add_argument("--t_end", type=str, default=None, help="t_end of dpmsolver.")
|
| 84 |
+
|
| 85 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
| 86 |
+
|
| 87 |
+
return parser
|
dataset/font_dataset.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
from torch.utils.data import Dataset
|
| 6 |
+
import torchvision.transforms as transforms
|
| 7 |
+
|
| 8 |
+
def get_nonorm_transform(resolution):
|
| 9 |
+
nonorm_transform = transforms.Compose(
|
| 10 |
+
[transforms.Resize((resolution, resolution),
|
| 11 |
+
interpolation=transforms.InterpolationMode.BILINEAR),
|
| 12 |
+
transforms.ToTensor()])
|
| 13 |
+
return nonorm_transform
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class FontDataset(Dataset):
|
| 17 |
+
"""The dataset of font generation
|
| 18 |
+
"""
|
| 19 |
+
def __init__(self, args, phase, transforms=None):
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.root = args.data_root
|
| 22 |
+
self.phase = phase
|
| 23 |
+
|
| 24 |
+
# Get Data path
|
| 25 |
+
self.get_path()
|
| 26 |
+
self.transforms = transforms
|
| 27 |
+
self.nonorm_transforms = get_nonorm_transform(args.resolution)
|
| 28 |
+
|
| 29 |
+
def get_path(self):
|
| 30 |
+
self.target_images = []
|
| 31 |
+
# images with related style
|
| 32 |
+
self.style_to_images = {}
|
| 33 |
+
target_image_dir = f"{self.root}/{self.phase}/TargetImage"
|
| 34 |
+
for style in os.listdir(target_image_dir):
|
| 35 |
+
images_related_style = []
|
| 36 |
+
for img in os.listdir(f"{target_image_dir}/{style}"):
|
| 37 |
+
img_path = f"{target_image_dir}/{style}/{img}"
|
| 38 |
+
self.target_images.append(img_path)
|
| 39 |
+
images_related_style.append(img_path)
|
| 40 |
+
self.style_to_images[style] = images_related_style
|
| 41 |
+
|
| 42 |
+
def __getitem__(self, index):
|
| 43 |
+
target_image_path = self.target_images[index]
|
| 44 |
+
target_image_name = target_image_path.split('/')[-1]
|
| 45 |
+
style, content = target_image_name.split('.')[0].split('+')
|
| 46 |
+
|
| 47 |
+
# Read content image
|
| 48 |
+
content_image_path = f"{self.root}/{self.phase}/ContentImage/{content}.jpg"
|
| 49 |
+
content_image = Image.open(content_image_path).convert('RGB')
|
| 50 |
+
|
| 51 |
+
# Random sample used for style image
|
| 52 |
+
images_related_style = self.style_to_images[style].copy()
|
| 53 |
+
images_related_style.remove(target_image_path)
|
| 54 |
+
style_image_path = random.choice(images_related_style)
|
| 55 |
+
style_image = Image.open(style_image_path).convert("RGB")
|
| 56 |
+
|
| 57 |
+
# Read target image
|
| 58 |
+
target_image = Image.open(target_image_path).convert("RGB")
|
| 59 |
+
nonorm_target_image = self.nonorm_transforms(target_image)
|
| 60 |
+
|
| 61 |
+
if self.transforms is not None:
|
| 62 |
+
content_image = self.transforms[0](content_image)
|
| 63 |
+
style_image = self.transforms[1](style_image)
|
| 64 |
+
target_image = self.transforms[2](target_image)
|
| 65 |
+
|
| 66 |
+
return content_image, style_image, target_image, nonorm_target_image, target_image_path
|
| 67 |
+
|
| 68 |
+
def __len__(self):
|
| 69 |
+
return len(self.target_images)
|
figures/ref_imgs/ref_/345/243/244.jpg
ADDED
|
figures/ref_imgs/ref_/345/252/232.jpg
ADDED
|
figures/ref_imgs/ref_/346/252/200.jpg
ADDED
|
figures/ref_imgs/ref_/346/254/237.jpg
ADDED
|
figures/ref_imgs/ref_/347/251/227.jpg
ADDED
|
figures/ref_imgs/ref_/347/261/215.jpg
ADDED
|
figures/ref_imgs/ref_/347/261/215_1.jpg
ADDED
|
figures/ref_imgs/ref_/350/234/223.jpg
ADDED
|
figures/ref_imgs/ref_/350/261/204.jpg
ADDED
|
figures/ref_imgs/ref_/351/227/241.jpg
ADDED
|
figures/ref_imgs/ref_/351/233/225.jpg
ADDED
|
figures/ref_imgs/ref_/351/236/243.jpg
ADDED
|
figures/ref_imgs/ref_/351/246/250.jpg
ADDED
|
figures/ref_imgs/ref_/351/262/270.jpg
ADDED
|
figures/ref_imgs/ref_/351/267/242.jpg
ADDED
|
figures/ref_imgs/ref_/351/271/260.jpg
ADDED
|
figures/source_imgs/source_/347/201/250.jpg
ADDED
|
figures/source_imgs/source_/351/207/205.jpg
ADDED
|
figures/source_imgs/source_/351/221/253.jpg
ADDED
|
figures/source_imgs/source_/351/221/273.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.33.1
|
| 2 |
+
accelerate==0.23.0
|
| 3 |
+
diffusers==0.22.0.dev0
|
| 4 |
+
gradio==4.8.0
|
| 5 |
+
yaml
|
sample.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import time
|
| 4 |
+
import random
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torchvision.transforms as transforms
|
| 10 |
+
from accelerate.utils import set_seed
|
| 11 |
+
|
| 12 |
+
from src import (FontDiffuserDPMPipeline,
|
| 13 |
+
FontDiffuserModelDPM,
|
| 14 |
+
build_ddpm_scheduler,
|
| 15 |
+
build_unet,
|
| 16 |
+
build_content_encoder,
|
| 17 |
+
build_style_encoder)
|
| 18 |
+
from utils import (ttf2im,
|
| 19 |
+
load_ttf,
|
| 20 |
+
is_char_in_font,
|
| 21 |
+
save_args_to_yaml,
|
| 22 |
+
save_single_image,
|
| 23 |
+
save_image_with_content_style)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def arg_parse():
|
| 27 |
+
from configs.fontdiffuser import get_parser
|
| 28 |
+
|
| 29 |
+
parser = get_parser()
|
| 30 |
+
parser.add_argument("--ckpt_dir", type=str, default=None)
|
| 31 |
+
parser.add_argument("--demo", action="store_true")
|
| 32 |
+
parser.add_argument("--controlnet", type=bool, default=False,
|
| 33 |
+
help="If in demo mode, the controlnet can be added.")
|
| 34 |
+
parser.add_argument("--character_input", action="store_true")
|
| 35 |
+
parser.add_argument("--content_character", type=str, default=None)
|
| 36 |
+
parser.add_argument("--content_image_path", type=str, default=None)
|
| 37 |
+
parser.add_argument("--style_image_path", type=str, default=None)
|
| 38 |
+
parser.add_argument("--save_image", action="store_true")
|
| 39 |
+
parser.add_argument("--save_image_dir", type=str, default=None,
|
| 40 |
+
help="The saving directory.")
|
| 41 |
+
parser.add_argument("--device", type=str, default="cuda:0")
|
| 42 |
+
parser.add_argument("--ttf_path", type=str, default="ttf/KaiXinSongA.ttf")
|
| 43 |
+
args = parser.parse_args()
|
| 44 |
+
style_image_size = args.style_image_size
|
| 45 |
+
content_image_size = args.content_image_size
|
| 46 |
+
args.style_image_size = (style_image_size, style_image_size)
|
| 47 |
+
args.content_image_size = (content_image_size, content_image_size)
|
| 48 |
+
|
| 49 |
+
return args
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def image_process(args, content_image=None, style_image=None):
|
| 53 |
+
if not args.demo:
|
| 54 |
+
# Read content image and style image
|
| 55 |
+
if args.character_input:
|
| 56 |
+
assert args.content_character is not None, "The content_character should not be None."
|
| 57 |
+
if not is_char_in_font(font_path=args.ttf_path, char=args.content_character):
|
| 58 |
+
return None, None
|
| 59 |
+
font = load_ttf(ttf_path=args.ttf_path)
|
| 60 |
+
content_image = ttf2im(font=font, char=args.content_character)
|
| 61 |
+
content_image_pil = content_image.copy()
|
| 62 |
+
else:
|
| 63 |
+
content_image = Image.open(args.content_image_path).convert('RGB')
|
| 64 |
+
content_image_pil = None
|
| 65 |
+
style_image = Image.open(args.style_image_path).convert('RGB')
|
| 66 |
+
else:
|
| 67 |
+
assert style_image is not None, "The style image should not be None."
|
| 68 |
+
if args.character_input:
|
| 69 |
+
assert args.content_character is not None, "The content_character should not be None."
|
| 70 |
+
if not is_char_in_font(font_path=args.ttf_path, char=args.content_character):
|
| 71 |
+
return None, None
|
| 72 |
+
font = load_ttf(ttf_path=args.ttf_path)
|
| 73 |
+
content_image = ttf2im(font=font, char=args.content_character)
|
| 74 |
+
else:
|
| 75 |
+
assert content_image is not None, "The content image should not be None."
|
| 76 |
+
content_image_pil = None
|
| 77 |
+
|
| 78 |
+
## Dataset transform
|
| 79 |
+
content_inference_transforms = transforms.Compose(
|
| 80 |
+
[transforms.Resize(args.content_image_size, \
|
| 81 |
+
interpolation=transforms.InterpolationMode.BILINEAR),
|
| 82 |
+
transforms.ToTensor(),
|
| 83 |
+
transforms.Normalize([0.5], [0.5])])
|
| 84 |
+
style_inference_transforms = transforms.Compose(
|
| 85 |
+
[transforms.Resize(args.style_image_size, \
|
| 86 |
+
interpolation=transforms.InterpolationMode.BILINEAR),
|
| 87 |
+
transforms.ToTensor(),
|
| 88 |
+
transforms.Normalize([0.5], [0.5])])
|
| 89 |
+
content_image = content_inference_transforms(content_image)[None, :]
|
| 90 |
+
style_image = style_inference_transforms(style_image)[None, :]
|
| 91 |
+
|
| 92 |
+
return content_image, style_image, content_image_pil
|
| 93 |
+
|
| 94 |
+
def load_fontdiffuer_pipeline(args):
|
| 95 |
+
# Load the model state_dict
|
| 96 |
+
unet = build_unet(args=args)
|
| 97 |
+
unet.load_state_dict(torch.load(f"{args.ckpt_dir}/unet.pth"))
|
| 98 |
+
style_encoder = build_style_encoder(args=args)
|
| 99 |
+
style_encoder.load_state_dict(torch.load(f"{args.ckpt_dir}/style_encoder.pth"))
|
| 100 |
+
content_encoder = build_content_encoder(args=args)
|
| 101 |
+
content_encoder.load_state_dict(torch.load(f"{args.ckpt_dir}/content_encoder.pth"))
|
| 102 |
+
model = FontDiffuserModelDPM(
|
| 103 |
+
unet=unet,
|
| 104 |
+
style_encoder=style_encoder,
|
| 105 |
+
content_encoder=content_encoder)
|
| 106 |
+
model.to(args.device)
|
| 107 |
+
print("Loaded the model state_dict successfully!")
|
| 108 |
+
|
| 109 |
+
# Load the training ddpm_scheduler.
|
| 110 |
+
train_scheduler = build_ddpm_scheduler(args=args)
|
| 111 |
+
print("Loaded training DDPM scheduler sucessfully!")
|
| 112 |
+
|
| 113 |
+
# Load the DPM_Solver to generate the sample.
|
| 114 |
+
pipe = FontDiffuserDPMPipeline(
|
| 115 |
+
model=model,
|
| 116 |
+
ddpm_train_scheduler=train_scheduler,
|
| 117 |
+
model_type=args.model_type,
|
| 118 |
+
guidance_type=args.guidance_type,
|
| 119 |
+
guidance_scale=args.guidance_scale,
|
| 120 |
+
)
|
| 121 |
+
print("Loaded dpm_solver pipeline sucessfully!")
|
| 122 |
+
|
| 123 |
+
return pipe
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def sampling(args, pipe, content_image=None, style_image=None):
|
| 127 |
+
if not args.demo:
|
| 128 |
+
os.makedirs(args.save_image_dir, exist_ok=True)
|
| 129 |
+
# saving sampling config
|
| 130 |
+
save_args_to_yaml(args=args, output_file=f"{args.save_image_dir}/sampling_config.yaml")
|
| 131 |
+
|
| 132 |
+
if args.seed:
|
| 133 |
+
set_seed(seed=args.seed)
|
| 134 |
+
|
| 135 |
+
content_image, style_image, content_image_pil = image_process(args=args,
|
| 136 |
+
content_image=content_image,
|
| 137 |
+
style_image=style_image)
|
| 138 |
+
if content_image == None:
|
| 139 |
+
print(f"The content_character you provided is not in the ttf. \
|
| 140 |
+
Please change the content_character or you can change the ttf.")
|
| 141 |
+
return None
|
| 142 |
+
|
| 143 |
+
with torch.no_grad():
|
| 144 |
+
content_image = content_image.to(args.device)
|
| 145 |
+
style_image = style_image.to(args.device)
|
| 146 |
+
print(f"Sampling by DPM-Solver++ ......")
|
| 147 |
+
start = time.time()
|
| 148 |
+
images = pipe.generate(
|
| 149 |
+
content_images=content_image,
|
| 150 |
+
style_images=style_image,
|
| 151 |
+
batch_size=1,
|
| 152 |
+
order=args.order,
|
| 153 |
+
num_inference_step=args.num_inference_steps,
|
| 154 |
+
content_encoder_downsample_size=args.content_encoder_downsample_size,
|
| 155 |
+
t_start=args.t_start,
|
| 156 |
+
t_end=args.t_end,
|
| 157 |
+
dm_size=args.content_image_size,
|
| 158 |
+
algorithm_type=args.algorithm_type,
|
| 159 |
+
skip_type=args.skip_type,
|
| 160 |
+
method=args.method,
|
| 161 |
+
correcting_x0_fn=args.correcting_x0_fn)
|
| 162 |
+
end = time.time()
|
| 163 |
+
|
| 164 |
+
if args.save_image:
|
| 165 |
+
print(f"Saving the image ......")
|
| 166 |
+
save_single_image(save_dir=args.save_image_dir, image=images[0])
|
| 167 |
+
if args.character_input:
|
| 168 |
+
save_image_with_content_style(save_dir=args.save_image_dir,
|
| 169 |
+
image=images[0],
|
| 170 |
+
content_image_pil=content_image_pil,
|
| 171 |
+
content_image_path=None,
|
| 172 |
+
style_image_path=args.style_image_path,
|
| 173 |
+
resolution=args.resolution)
|
| 174 |
+
else:
|
| 175 |
+
save_image_with_content_style(save_dir=args.save_image_dir,
|
| 176 |
+
image=images[0],
|
| 177 |
+
content_image_pil=None,
|
| 178 |
+
content_image_path=args.content_image_path,
|
| 179 |
+
style_image_path=args.style_image_path,
|
| 180 |
+
resolution=args.resolution)
|
| 181 |
+
print(f"Finish the sampling process, costing time {end - start}s")
|
| 182 |
+
return images[0]
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def load_controlnet_pipeline(args,
|
| 186 |
+
config_path="lllyasviel/sd-controlnet-canny",
|
| 187 |
+
ckpt_path="runwayml/stable-diffusion-v1-5"):
|
| 188 |
+
from diffusers import ControlNetModel, AutoencoderKL
|
| 189 |
+
# load controlnet model and pipeline
|
| 190 |
+
from diffusers import StableDiffusionControlNetPipeline, UniPCMultistepScheduler
|
| 191 |
+
controlnet = ControlNetModel.from_pretrained(config_path,
|
| 192 |
+
torch_dtype=torch.float16,
|
| 193 |
+
cache_dir=f"{args.ckpt_dir}/controlnet")
|
| 194 |
+
print(f"Loaded ControlNet Model Successfully!")
|
| 195 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(ckpt_path,
|
| 196 |
+
controlnet=controlnet,
|
| 197 |
+
torch_dtype=torch.float16,
|
| 198 |
+
cache_dir=f"{args.ckpt_dir}/controlnet_pipeline")
|
| 199 |
+
# faster
|
| 200 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 201 |
+
pipe.enable_model_cpu_offload()
|
| 202 |
+
print(f"Loaded ControlNet Pipeline Successfully!")
|
| 203 |
+
|
| 204 |
+
return pipe
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def controlnet(text_prompt,
|
| 208 |
+
pil_image,
|
| 209 |
+
pipe):
|
| 210 |
+
image = np.array(pil_image)
|
| 211 |
+
# get canny image
|
| 212 |
+
image = cv2.Canny(image=image, threshold1=100, threshold2=200)
|
| 213 |
+
image = image[:, :, None]
|
| 214 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 215 |
+
canny_image = Image.fromarray(image)
|
| 216 |
+
|
| 217 |
+
seed = random.randint(0, 10000)
|
| 218 |
+
generator = torch.manual_seed(seed)
|
| 219 |
+
image = pipe(text_prompt,
|
| 220 |
+
num_inference_steps=50,
|
| 221 |
+
generator=generator,
|
| 222 |
+
image=canny_image,
|
| 223 |
+
output_type='pil').images[0]
|
| 224 |
+
return image
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def load_instructpix2pix_pipeline(args,
|
| 228 |
+
ckpt_path="timbrooks/instruct-pix2pix"):
|
| 229 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
| 230 |
+
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(ckpt_path,
|
| 231 |
+
torch_dtype=torch.float16)
|
| 232 |
+
pipe.to(args.device)
|
| 233 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 234 |
+
|
| 235 |
+
return pipe
|
| 236 |
+
|
| 237 |
+
def instructpix2pix(pil_image, text_prompt, pipe):
|
| 238 |
+
image = pil_image.resize((512, 512))
|
| 239 |
+
seed = random.randint(0, 10000)
|
| 240 |
+
generator = torch.manual_seed(seed)
|
| 241 |
+
image = pipe(prompt=text_prompt, image=image, generator=generator,
|
| 242 |
+
num_inference_steps=20, image_guidance_scale=1.1).images[0]
|
| 243 |
+
|
| 244 |
+
return image
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
if __name__=="__main__":
|
| 248 |
+
args = arg_parse()
|
| 249 |
+
|
| 250 |
+
# load fontdiffuser pipeline
|
| 251 |
+
pipe = load_fontdiffuer_pipeline(args=args)
|
| 252 |
+
out_image = sampling(args=args, pipe=pipe)
|
src/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
src/__init__.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .model import (FontDiffuserModel,
|
| 2 |
+
FontDiffuserModelDPM)
|
| 3 |
+
from .criterion import ContentPerceptualLoss
|
| 4 |
+
from .dpm_solver.pipeline_dpm_solver import FontDiffuserDPMPipeline
|
| 5 |
+
from .modules import (ContentEncoder,
|
| 6 |
+
StyleEncoder,
|
| 7 |
+
UNet)
|
| 8 |
+
from .build import (build_unet,
|
| 9 |
+
build_ddpm_scheduler,
|
| 10 |
+
build_style_encoder,
|
| 11 |
+
build_content_encoder)
|
src/build.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
| 2 |
+
from src import (ContentEncoder,
|
| 3 |
+
StyleEncoder,
|
| 4 |
+
UNet)
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def build_unet(args):
|
| 8 |
+
unet = UNet(
|
| 9 |
+
sample_size=args.resolution,
|
| 10 |
+
in_channels=3,
|
| 11 |
+
out_channels=3,
|
| 12 |
+
flip_sin_to_cos=True,
|
| 13 |
+
freq_shift=0,
|
| 14 |
+
down_block_types=('DownBlock2D',
|
| 15 |
+
'MCADownBlock2D',
|
| 16 |
+
'MCADownBlock2D',
|
| 17 |
+
'DownBlock2D'),
|
| 18 |
+
up_block_types=('UpBlock2D',
|
| 19 |
+
'StyleRSIUpBlock2D',
|
| 20 |
+
'StyleRSIUpBlock2D',
|
| 21 |
+
'UpBlock2D'),
|
| 22 |
+
block_out_channels=args.unet_channels,
|
| 23 |
+
layers_per_block=2,
|
| 24 |
+
downsample_padding=1,
|
| 25 |
+
mid_block_scale_factor=1,
|
| 26 |
+
act_fn='silu',
|
| 27 |
+
norm_num_groups=32,
|
| 28 |
+
norm_eps=1e-05,
|
| 29 |
+
cross_attention_dim=args.style_start_channel * 16,
|
| 30 |
+
attention_head_dim=1,
|
| 31 |
+
channel_attn=args.channel_attn,
|
| 32 |
+
content_encoder_downsample_size=args.content_encoder_downsample_size,
|
| 33 |
+
content_start_channel=args.content_start_channel,
|
| 34 |
+
reduction=32)
|
| 35 |
+
|
| 36 |
+
return unet
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def build_style_encoder(args):
|
| 40 |
+
style_image_encoder = StyleEncoder(
|
| 41 |
+
G_ch=args.style_start_channel,
|
| 42 |
+
resolution=args.style_image_size[0])
|
| 43 |
+
print("Get CG-GAN Style Encoder!")
|
| 44 |
+
return style_image_encoder
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def build_content_encoder(args):
|
| 48 |
+
content_image_encoder = ContentEncoder(
|
| 49 |
+
G_ch=args.content_start_channel,
|
| 50 |
+
resolution=args.content_image_size[0])
|
| 51 |
+
print("Get CG-GAN Content Encoder!")
|
| 52 |
+
return content_image_encoder
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def build_ddpm_scheduler(args):
|
| 56 |
+
ddpm_scheduler = DDPMScheduler(
|
| 57 |
+
num_train_timesteps=1000,
|
| 58 |
+
beta_start=0.0001,
|
| 59 |
+
beta_end=0.02,
|
| 60 |
+
beta_schedule=args.beta_scheduler,
|
| 61 |
+
trained_betas=None,
|
| 62 |
+
variance_type="fixed_small",
|
| 63 |
+
clip_sample=True)
|
| 64 |
+
return ddpm_scheduler
|
src/criterion.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torchvision
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class VGG16(nn.Module):
|
| 7 |
+
def __init__(self):
|
| 8 |
+
super(VGG16, self).__init__()
|
| 9 |
+
vgg16 = torchvision.models.vgg16(pretrained=True)
|
| 10 |
+
|
| 11 |
+
self.enc_1 = nn.Sequential(*vgg16.features[:5])
|
| 12 |
+
self.enc_2 = nn.Sequential(*vgg16.features[5:10])
|
| 13 |
+
self.enc_3 = nn.Sequential(*vgg16.features[10:17])
|
| 14 |
+
|
| 15 |
+
for i in range(3):
|
| 16 |
+
for param in getattr(self, f'enc_{i+1:d}').parameters():
|
| 17 |
+
param.requires_grad = False
|
| 18 |
+
|
| 19 |
+
def forward(self, image):
|
| 20 |
+
results = [image]
|
| 21 |
+
for i in range(3):
|
| 22 |
+
func = getattr(self, f'enc_{i+1:d}')
|
| 23 |
+
results.append(func(results[-1]))
|
| 24 |
+
return results[1:]
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class ContentPerceptualLoss(nn.Module):
|
| 28 |
+
|
| 29 |
+
def __init__(self):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.VGG = VGG16()
|
| 32 |
+
|
| 33 |
+
def calculate_loss(self, generated_images, target_images, device):
|
| 34 |
+
self.VGG = self.VGG.to(device)
|
| 35 |
+
|
| 36 |
+
generated_features = self.VGG(generated_images)
|
| 37 |
+
target_features = self.VGG(target_images)
|
| 38 |
+
|
| 39 |
+
perceptual_loss = 0
|
| 40 |
+
perceptual_loss += torch.mean((target_features[0] - generated_features[0]) ** 2)
|
| 41 |
+
perceptual_loss += torch.mean((target_features[1] - generated_features[1]) ** 2)
|
| 42 |
+
perceptual_loss += torch.mean((target_features[2] - generated_features[2]) ** 2)
|
| 43 |
+
perceptual_loss /= 3
|
| 44 |
+
return perceptual_loss
|
src/dpm_solver/dpm_solver_pytorch.py
ADDED
|
@@ -0,0 +1,1332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import math
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class NoiseScheduleVP:
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
schedule='discrete',
|
| 10 |
+
betas=None,
|
| 11 |
+
alphas_cumprod=None,
|
| 12 |
+
continuous_beta_0=0.1,
|
| 13 |
+
continuous_beta_1=20.,
|
| 14 |
+
dtype=torch.float32,
|
| 15 |
+
):
|
| 16 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
| 17 |
+
|
| 18 |
+
***
|
| 19 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
| 20 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
| 21 |
+
***
|
| 22 |
+
|
| 23 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
| 24 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
| 25 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
| 26 |
+
|
| 27 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
| 28 |
+
sigma_t = self.marginal_std(t)
|
| 29 |
+
lambda_t = self.marginal_lambda(t)
|
| 30 |
+
|
| 31 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
| 32 |
+
|
| 33 |
+
t = self.inverse_lambda(lambda_t)
|
| 34 |
+
|
| 35 |
+
===============================================================
|
| 36 |
+
|
| 37 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
| 38 |
+
|
| 39 |
+
1. For discrete-time DPMs:
|
| 40 |
+
|
| 41 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
| 42 |
+
t_i = (i + 1) / N
|
| 43 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
| 44 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
| 48 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
| 49 |
+
|
| 50 |
+
Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
| 51 |
+
|
| 52 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
| 53 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
| 54 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
| 55 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
| 56 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
| 57 |
+
and
|
| 58 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
2. For continuous-time DPMs:
|
| 62 |
+
|
| 63 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
| 64 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
| 68 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
| 69 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
| 70 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
| 71 |
+
T: A `float` number. The ending time of the forward process.
|
| 72 |
+
|
| 73 |
+
===============================================================
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
| 77 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
| 78 |
+
Returns:
|
| 79 |
+
A wrapper object of the forward SDE (VP type).
|
| 80 |
+
|
| 81 |
+
===============================================================
|
| 82 |
+
|
| 83 |
+
Example:
|
| 84 |
+
|
| 85 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
| 86 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
| 87 |
+
|
| 88 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
| 89 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
| 90 |
+
|
| 91 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
| 92 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
| 93 |
+
|
| 94 |
+
"""
|
| 95 |
+
|
| 96 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
| 97 |
+
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
|
| 98 |
+
|
| 99 |
+
self.schedule = schedule
|
| 100 |
+
if schedule == 'discrete':
|
| 101 |
+
if betas is not None:
|
| 102 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
| 103 |
+
else:
|
| 104 |
+
assert alphas_cumprod is not None
|
| 105 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
| 106 |
+
self.total_N = len(log_alphas)
|
| 107 |
+
self.T = 1.
|
| 108 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype)
|
| 109 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,)).to(dtype=dtype)
|
| 110 |
+
else:
|
| 111 |
+
self.total_N = 1000
|
| 112 |
+
self.beta_0 = continuous_beta_0
|
| 113 |
+
self.beta_1 = continuous_beta_1
|
| 114 |
+
self.cosine_s = 0.008
|
| 115 |
+
self.cosine_beta_max = 999.
|
| 116 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
| 117 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
| 118 |
+
self.schedule = schedule
|
| 119 |
+
if schedule == 'cosine':
|
| 120 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
| 121 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
| 122 |
+
self.T = 0.9946
|
| 123 |
+
else:
|
| 124 |
+
self.T = 1.
|
| 125 |
+
|
| 126 |
+
def marginal_log_mean_coeff(self, t):
|
| 127 |
+
"""
|
| 128 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
| 129 |
+
"""
|
| 130 |
+
if self.schedule == 'discrete':
|
| 131 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
| 132 |
+
elif self.schedule == 'linear':
|
| 133 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
| 134 |
+
elif self.schedule == 'cosine':
|
| 135 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
| 136 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
| 137 |
+
return log_alpha_t
|
| 138 |
+
|
| 139 |
+
def marginal_alpha(self, t):
|
| 140 |
+
"""
|
| 141 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
| 142 |
+
"""
|
| 143 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
| 144 |
+
|
| 145 |
+
def marginal_std(self, t):
|
| 146 |
+
"""
|
| 147 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
| 148 |
+
"""
|
| 149 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
| 150 |
+
|
| 151 |
+
def marginal_lambda(self, t):
|
| 152 |
+
"""
|
| 153 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
| 154 |
+
"""
|
| 155 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
| 156 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
| 157 |
+
return log_mean_coeff - log_std
|
| 158 |
+
|
| 159 |
+
def inverse_lambda(self, lamb):
|
| 160 |
+
"""
|
| 161 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
| 162 |
+
"""
|
| 163 |
+
if self.schedule == 'linear':
|
| 164 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
| 165 |
+
Delta = self.beta_0**2 + tmp
|
| 166 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
| 167 |
+
elif self.schedule == 'discrete':
|
| 168 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
| 169 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
| 170 |
+
return t.reshape((-1,))
|
| 171 |
+
else:
|
| 172 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
| 173 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
| 174 |
+
t = t_fn(log_alpha)
|
| 175 |
+
return t
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def model_wrapper(
|
| 179 |
+
model,
|
| 180 |
+
noise_schedule,
|
| 181 |
+
model_type="noise",
|
| 182 |
+
model_kwargs={},
|
| 183 |
+
guidance_type="uncond",
|
| 184 |
+
condition=None,
|
| 185 |
+
unconditional_condition=None,
|
| 186 |
+
guidance_scale=1.,
|
| 187 |
+
classifier_fn=None,
|
| 188 |
+
classifier_kwargs={},
|
| 189 |
+
):
|
| 190 |
+
"""Create a wrapper function for the noise prediction model.
|
| 191 |
+
|
| 192 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
| 193 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
| 194 |
+
|
| 195 |
+
We support four types of the diffusion model by setting `model_type`:
|
| 196 |
+
|
| 197 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
| 198 |
+
|
| 199 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
| 200 |
+
|
| 201 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
| 202 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
| 203 |
+
|
| 204 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
| 205 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
| 206 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
| 207 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
| 208 |
+
|
| 209 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
| 210 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
| 211 |
+
```
|
| 212 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
| 213 |
+
```
|
| 214 |
+
|
| 215 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
| 216 |
+
1. "uncond": unconditional sampling by DPMs.
|
| 217 |
+
The input `model` has the following format:
|
| 218 |
+
``
|
| 219 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
| 220 |
+
``
|
| 221 |
+
|
| 222 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
| 223 |
+
The input `model` has the following format:
|
| 224 |
+
``
|
| 225 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
| 226 |
+
``
|
| 227 |
+
|
| 228 |
+
The input `classifier_fn` has the following format:
|
| 229 |
+
``
|
| 230 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
| 231 |
+
``
|
| 232 |
+
|
| 233 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
| 234 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
| 235 |
+
|
| 236 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
| 237 |
+
The input `model` has the following format:
|
| 238 |
+
``
|
| 239 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
| 240 |
+
``
|
| 241 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
| 242 |
+
|
| 243 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
| 244 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
| 248 |
+
or continuous-time labels (i.e. epsilon to T).
|
| 249 |
+
|
| 250 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
| 251 |
+
``
|
| 252 |
+
def model_fn(x, t_continuous) -> noise:
|
| 253 |
+
t_input = get_model_input_time(t_continuous)
|
| 254 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
| 255 |
+
``
|
| 256 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
| 257 |
+
|
| 258 |
+
===============================================================
|
| 259 |
+
|
| 260 |
+
Args:
|
| 261 |
+
model: A diffusion model with the corresponding format described above.
|
| 262 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
| 263 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
| 264 |
+
"noise" or "x_start" or "v" or "score".
|
| 265 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
| 266 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
| 267 |
+
"uncond" or "classifier" or "classifier-free".
|
| 268 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
| 269 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
| 270 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
| 271 |
+
Only used for "classifier-free" guidance type.
|
| 272 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
| 273 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
| 274 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
| 275 |
+
Returns:
|
| 276 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
| 277 |
+
"""
|
| 278 |
+
|
| 279 |
+
def get_model_input_time(t_continuous):
|
| 280 |
+
"""
|
| 281 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
| 282 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
| 283 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
| 284 |
+
"""
|
| 285 |
+
if noise_schedule.schedule == 'discrete':
|
| 286 |
+
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
| 287 |
+
else:
|
| 288 |
+
return t_continuous
|
| 289 |
+
|
| 290 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
| 291 |
+
t_input = get_model_input_time(t_continuous)
|
| 292 |
+
if cond is None:
|
| 293 |
+
output = model(x, t_input, **model_kwargs)
|
| 294 |
+
else:
|
| 295 |
+
output = model(x, t_input, cond, **model_kwargs)
|
| 296 |
+
if model_type == "noise":
|
| 297 |
+
return output
|
| 298 |
+
elif model_type == "x_start":
|
| 299 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
| 300 |
+
return (x - alpha_t * output) / sigma_t
|
| 301 |
+
elif model_type == "v":
|
| 302 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
| 303 |
+
return alpha_t * output + sigma_t * x
|
| 304 |
+
elif model_type == "score":
|
| 305 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
| 306 |
+
return -sigma_t * output
|
| 307 |
+
|
| 308 |
+
def cond_grad_fn(x, t_input):
|
| 309 |
+
"""
|
| 310 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
| 311 |
+
"""
|
| 312 |
+
with torch.enable_grad():
|
| 313 |
+
x_in = x.detach().requires_grad_(True)
|
| 314 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
| 315 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
| 316 |
+
|
| 317 |
+
def model_fn(x, t_continuous):
|
| 318 |
+
"""
|
| 319 |
+
The noise predicition model function that is used for DPM-Solver.
|
| 320 |
+
"""
|
| 321 |
+
if guidance_type == "uncond":
|
| 322 |
+
return noise_pred_fn(x, t_continuous)
|
| 323 |
+
elif guidance_type == "classifier":
|
| 324 |
+
assert classifier_fn is not None
|
| 325 |
+
t_input = get_model_input_time(t_continuous)
|
| 326 |
+
cond_grad = cond_grad_fn(x, t_input)
|
| 327 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
| 328 |
+
noise = noise_pred_fn(x, t_continuous)
|
| 329 |
+
return noise - guidance_scale * sigma_t * cond_grad
|
| 330 |
+
elif guidance_type == "classifier-free":
|
| 331 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
| 332 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
| 333 |
+
elif model_kwargs["version"] == "V1" or model_kwargs["version"] == "V2_ConStyle" or model_kwargs["version"] == "V3": # add this
|
| 334 |
+
x_in = torch.cat([x] * 2)
|
| 335 |
+
t_in = torch.cat([t_continuous] * 2)
|
| 336 |
+
c_in = []
|
| 337 |
+
c_in.append(torch.cat([unconditional_condition[0], condition[0]], dim=0))
|
| 338 |
+
c_in.append(torch.cat([unconditional_condition[1], condition[1]], dim=0))
|
| 339 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
| 340 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
| 341 |
+
elif model_kwargs["version"] == "FG_Sep":
|
| 342 |
+
x_in = torch.cat([x] * 3)
|
| 343 |
+
t_in = torch.cat([t_continuous] * 3)
|
| 344 |
+
c_in = []
|
| 345 |
+
c_in.append(torch.cat([unconditional_condition[0], unconditional_condition[0], condition[0]], dim=0))
|
| 346 |
+
c_in.append(torch.cat([unconditional_condition[1], condition[1], unconditional_condition[1]], dim=0))
|
| 347 |
+
noise_uncond, noise_cond_style, noise_cond_content = noise_pred_fn(x_in, t_in, cond=c_in).chunk(3)
|
| 348 |
+
|
| 349 |
+
style_guidance_scale = guidance_scale[0]
|
| 350 |
+
content_guidance_scale = guidance_scale[1]
|
| 351 |
+
return noise_uncond + style_guidance_scale * (noise_cond_style - noise_uncond) + content_guidance_scale * (noise_cond_content - noise_uncond)
|
| 352 |
+
else:
|
| 353 |
+
x_in = torch.cat([x] * 2)
|
| 354 |
+
t_in = torch.cat([t_continuous] * 2)
|
| 355 |
+
c_in = torch.cat([unconditional_condition, condition])
|
| 356 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
| 357 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
| 358 |
+
|
| 359 |
+
assert model_type in ["noise", "x_start", "v"]
|
| 360 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
| 361 |
+
return model_fn
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class DPM_Solver:
|
| 365 |
+
def __init__(
|
| 366 |
+
self,
|
| 367 |
+
model_fn,
|
| 368 |
+
noise_schedule,
|
| 369 |
+
algorithm_type="dpmsolver++",
|
| 370 |
+
correcting_x0_fn=None,
|
| 371 |
+
correcting_xt_fn=None,
|
| 372 |
+
thresholding_max_val=1.,
|
| 373 |
+
dynamic_thresholding_ratio=0.995,
|
| 374 |
+
):
|
| 375 |
+
"""Construct a DPM-Solver.
|
| 376 |
+
|
| 377 |
+
We support both DPM-Solver (`algorithm_type="dpmsolver"`) and DPM-Solver++ (`algorithm_type="dpmsolver++"`).
|
| 378 |
+
|
| 379 |
+
We also support the "dynamic thresholding" method in Imagen[1]. For pixel-space diffusion models, you
|
| 380 |
+
can set both `algorithm_type="dpmsolver++"` and `correcting_x0_fn="dynamic_thresholding"` to use the
|
| 381 |
+
dynamic thresholding. The "dynamic thresholding" can greatly improve the sample quality for pixel-space
|
| 382 |
+
DPMs with large guidance scales. Note that the thresholding method is **unsuitable** for latent-space
|
| 383 |
+
DPMs (such as stable-diffusion).
|
| 384 |
+
|
| 385 |
+
To support advanced algorithms in image-to-image applications, we also support corrector functions for
|
| 386 |
+
both x0 and xt.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
| 390 |
+
``
|
| 391 |
+
def model_fn(x, t_continuous):
|
| 392 |
+
return noise
|
| 393 |
+
``
|
| 394 |
+
The shape of `x` is `(batch_size, **shape)`, and the shape of `t_continuous` is `(batch_size,)`.
|
| 395 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
| 396 |
+
algorithm_type: A `str`. Either "dpmsolver" or "dpmsolver++".
|
| 397 |
+
correcting_x0_fn: A `str` or a function with the following format:
|
| 398 |
+
```
|
| 399 |
+
def correcting_x0_fn(x0, t):
|
| 400 |
+
x0_new = ...
|
| 401 |
+
return x0_new
|
| 402 |
+
```
|
| 403 |
+
This function is to correct the outputs of the data prediction model at each sampling step. e.g.,
|
| 404 |
+
```
|
| 405 |
+
x0_pred = data_pred_model(xt, t)
|
| 406 |
+
if correcting_x0_fn is not None:
|
| 407 |
+
x0_pred = correcting_x0_fn(x0_pred, t)
|
| 408 |
+
xt_1 = update(x0_pred, xt, t)
|
| 409 |
+
```
|
| 410 |
+
If `correcting_x0_fn="dynamic_thresholding"`, we use the dynamic thresholding proposed in Imagen[1].
|
| 411 |
+
correcting_xt_fn: A function with the following format:
|
| 412 |
+
```
|
| 413 |
+
def correcting_xt_fn(xt, t, step):
|
| 414 |
+
x_new = ...
|
| 415 |
+
return x_new
|
| 416 |
+
```
|
| 417 |
+
This function is to correct the intermediate samples xt at each sampling step. e.g.,
|
| 418 |
+
```
|
| 419 |
+
xt = ...
|
| 420 |
+
xt = correcting_xt_fn(xt, t, step)
|
| 421 |
+
```
|
| 422 |
+
thresholding_max_val: A `float`. The max value for thresholding.
|
| 423 |
+
Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
|
| 424 |
+
dynamic_thresholding_ratio: A `float`. The ratio for dynamic thresholding (see Imagen[1] for details).
|
| 425 |
+
Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
|
| 426 |
+
|
| 427 |
+
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,
|
| 428 |
+
Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models
|
| 429 |
+
with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
| 430 |
+
"""
|
| 431 |
+
self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
|
| 432 |
+
self.noise_schedule = noise_schedule
|
| 433 |
+
assert algorithm_type in ["dpmsolver", "dpmsolver++"]
|
| 434 |
+
self.algorithm_type = algorithm_type
|
| 435 |
+
if correcting_x0_fn == "dynamic_thresholding":
|
| 436 |
+
self.correcting_x0_fn = self.dynamic_thresholding_fn
|
| 437 |
+
else:
|
| 438 |
+
self.correcting_x0_fn = correcting_x0_fn
|
| 439 |
+
self.correcting_xt_fn = correcting_xt_fn
|
| 440 |
+
self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
|
| 441 |
+
self.thresholding_max_val = thresholding_max_val
|
| 442 |
+
|
| 443 |
+
def dynamic_thresholding_fn(self, x0):
|
| 444 |
+
"""
|
| 445 |
+
The dynamic thresholding method.
|
| 446 |
+
"""
|
| 447 |
+
dims = x0.dim()
|
| 448 |
+
p = self.dynamic_thresholding_ratio
|
| 449 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
| 450 |
+
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
|
| 451 |
+
x0 = torch.clamp(x0, -s, s) / s
|
| 452 |
+
return x0
|
| 453 |
+
|
| 454 |
+
def noise_prediction_fn(self, x, t):
|
| 455 |
+
"""
|
| 456 |
+
Return the noise prediction model.
|
| 457 |
+
"""
|
| 458 |
+
return self.model(x, t)
|
| 459 |
+
|
| 460 |
+
def data_prediction_fn(self, x, t):
|
| 461 |
+
"""
|
| 462 |
+
Return the data prediction model (with corrector).
|
| 463 |
+
"""
|
| 464 |
+
noise = self.noise_prediction_fn(x, t)
|
| 465 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
| 466 |
+
x0 = (x - sigma_t * noise) / alpha_t
|
| 467 |
+
if self.correcting_x0_fn is not None:
|
| 468 |
+
x0 = self.correcting_x0_fn(x0)
|
| 469 |
+
return x0
|
| 470 |
+
|
| 471 |
+
def model_fn(self, x, t):
|
| 472 |
+
"""
|
| 473 |
+
Convert the model to the noise prediction model or the data prediction model.
|
| 474 |
+
"""
|
| 475 |
+
if self.algorithm_type == "dpmsolver++":
|
| 476 |
+
return self.data_prediction_fn(x, t)
|
| 477 |
+
else:
|
| 478 |
+
return self.noise_prediction_fn(x, t)
|
| 479 |
+
|
| 480 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
| 481 |
+
"""Compute the intermediate time steps for sampling.
|
| 482 |
+
|
| 483 |
+
Args:
|
| 484 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
| 485 |
+
- 'logSNR': uniform logSNR for the time steps.
|
| 486 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
| 487 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
| 488 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
| 489 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
| 490 |
+
N: A `int`. The total number of the spacing of the time steps.
|
| 491 |
+
device: A torch device.
|
| 492 |
+
Returns:
|
| 493 |
+
A pytorch tensor of the time steps, with the shape (N + 1,).
|
| 494 |
+
"""
|
| 495 |
+
if skip_type == 'logSNR':
|
| 496 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
| 497 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
| 498 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
| 499 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
| 500 |
+
elif skip_type == 'time_uniform':
|
| 501 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
| 502 |
+
elif skip_type == 'time_quadratic':
|
| 503 |
+
t_order = 2
|
| 504 |
+
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
| 505 |
+
return t
|
| 506 |
+
else:
|
| 507 |
+
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
| 508 |
+
|
| 509 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
| 510 |
+
"""
|
| 511 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
| 512 |
+
|
| 513 |
+
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
| 514 |
+
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
| 515 |
+
- If order == 1:
|
| 516 |
+
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
| 517 |
+
- If order == 2:
|
| 518 |
+
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
| 519 |
+
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
| 520 |
+
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
| 521 |
+
- If order == 3:
|
| 522 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
| 523 |
+
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
| 524 |
+
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
| 525 |
+
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
| 526 |
+
|
| 527 |
+
============================================
|
| 528 |
+
Args:
|
| 529 |
+
order: A `int`. The max order for the solver (2 or 3).
|
| 530 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
| 531 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
| 532 |
+
- 'logSNR': uniform logSNR for the time steps.
|
| 533 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
| 534 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
| 535 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
| 536 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
| 537 |
+
device: A torch device.
|
| 538 |
+
Returns:
|
| 539 |
+
orders: A list of the solver order of each step.
|
| 540 |
+
"""
|
| 541 |
+
if order == 3:
|
| 542 |
+
K = steps // 3 + 1
|
| 543 |
+
if steps % 3 == 0:
|
| 544 |
+
orders = [3,] * (K - 2) + [2, 1]
|
| 545 |
+
elif steps % 3 == 1:
|
| 546 |
+
orders = [3,] * (K - 1) + [1]
|
| 547 |
+
else:
|
| 548 |
+
orders = [3,] * (K - 1) + [2]
|
| 549 |
+
elif order == 2:
|
| 550 |
+
if steps % 2 == 0:
|
| 551 |
+
K = steps // 2
|
| 552 |
+
orders = [2,] * K
|
| 553 |
+
else:
|
| 554 |
+
K = steps // 2 + 1
|
| 555 |
+
orders = [2,] * (K - 1) + [1]
|
| 556 |
+
elif order == 1:
|
| 557 |
+
K = 1
|
| 558 |
+
orders = [1,] * steps
|
| 559 |
+
else:
|
| 560 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
| 561 |
+
if skip_type == 'logSNR':
|
| 562 |
+
# To reproduce the results in DPM-Solver paper
|
| 563 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
| 564 |
+
else:
|
| 565 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
|
| 566 |
+
return timesteps_outer, orders
|
| 567 |
+
|
| 568 |
+
def denoise_to_zero_fn(self, x, s):
|
| 569 |
+
"""
|
| 570 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
| 571 |
+
"""
|
| 572 |
+
return self.data_prediction_fn(x, s)
|
| 573 |
+
|
| 574 |
+
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
| 575 |
+
"""
|
| 576 |
+
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
| 577 |
+
|
| 578 |
+
Args:
|
| 579 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 580 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
| 581 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
| 582 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
| 583 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
| 584 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
| 585 |
+
Returns:
|
| 586 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 587 |
+
"""
|
| 588 |
+
ns = self.noise_schedule
|
| 589 |
+
dims = x.dim()
|
| 590 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
| 591 |
+
h = lambda_t - lambda_s
|
| 592 |
+
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
| 593 |
+
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
| 594 |
+
alpha_t = torch.exp(log_alpha_t)
|
| 595 |
+
|
| 596 |
+
if self.algorithm_type == "dpmsolver++":
|
| 597 |
+
phi_1 = torch.expm1(-h)
|
| 598 |
+
if model_s is None:
|
| 599 |
+
model_s = self.model_fn(x, s)
|
| 600 |
+
x_t = (
|
| 601 |
+
sigma_t / sigma_s * x
|
| 602 |
+
- alpha_t * phi_1 * model_s
|
| 603 |
+
)
|
| 604 |
+
if return_intermediate:
|
| 605 |
+
return x_t, {'model_s': model_s}
|
| 606 |
+
else:
|
| 607 |
+
return x_t
|
| 608 |
+
else:
|
| 609 |
+
phi_1 = torch.expm1(h)
|
| 610 |
+
if model_s is None:
|
| 611 |
+
model_s = self.model_fn(x, s)
|
| 612 |
+
x_t = (
|
| 613 |
+
torch.exp(log_alpha_t - log_alpha_s) * x
|
| 614 |
+
- (sigma_t * phi_1) * model_s
|
| 615 |
+
)
|
| 616 |
+
if return_intermediate:
|
| 617 |
+
return x_t, {'model_s': model_s}
|
| 618 |
+
else:
|
| 619 |
+
return x_t
|
| 620 |
+
|
| 621 |
+
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpmsolver'):
|
| 622 |
+
"""
|
| 623 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
| 624 |
+
|
| 625 |
+
Args:
|
| 626 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 627 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
| 628 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
| 629 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
| 630 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
| 631 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
| 632 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
| 633 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
| 634 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
| 635 |
+
Returns:
|
| 636 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 637 |
+
"""
|
| 638 |
+
if solver_type not in ['dpmsolver', 'taylor']:
|
| 639 |
+
raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
|
| 640 |
+
if r1 is None:
|
| 641 |
+
r1 = 0.5
|
| 642 |
+
ns = self.noise_schedule
|
| 643 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
| 644 |
+
h = lambda_t - lambda_s
|
| 645 |
+
lambda_s1 = lambda_s + r1 * h
|
| 646 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
| 647 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
|
| 648 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
| 649 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
| 650 |
+
|
| 651 |
+
if self.algorithm_type == "dpmsolver++":
|
| 652 |
+
phi_11 = torch.expm1(-r1 * h)
|
| 653 |
+
phi_1 = torch.expm1(-h)
|
| 654 |
+
|
| 655 |
+
if model_s is None:
|
| 656 |
+
model_s = self.model_fn(x, s)
|
| 657 |
+
x_s1 = (
|
| 658 |
+
(sigma_s1 / sigma_s) * x
|
| 659 |
+
- (alpha_s1 * phi_11) * model_s
|
| 660 |
+
)
|
| 661 |
+
model_s1 = self.model_fn(x_s1, s1)
|
| 662 |
+
if solver_type == 'dpmsolver':
|
| 663 |
+
x_t = (
|
| 664 |
+
(sigma_t / sigma_s) * x
|
| 665 |
+
- (alpha_t * phi_1) * model_s
|
| 666 |
+
- (0.5 / r1) * (alpha_t * phi_1) * (model_s1 - model_s)
|
| 667 |
+
)
|
| 668 |
+
elif solver_type == 'taylor':
|
| 669 |
+
x_t = (
|
| 670 |
+
(sigma_t / sigma_s) * x
|
| 671 |
+
- (alpha_t * phi_1) * model_s
|
| 672 |
+
+ (1. / r1) * (alpha_t * (phi_1 / h + 1.)) * (model_s1 - model_s)
|
| 673 |
+
)
|
| 674 |
+
else:
|
| 675 |
+
phi_11 = torch.expm1(r1 * h)
|
| 676 |
+
phi_1 = torch.expm1(h)
|
| 677 |
+
|
| 678 |
+
if model_s is None:
|
| 679 |
+
model_s = self.model_fn(x, s)
|
| 680 |
+
x_s1 = (
|
| 681 |
+
torch.exp(log_alpha_s1 - log_alpha_s) * x
|
| 682 |
+
- (sigma_s1 * phi_11) * model_s
|
| 683 |
+
)
|
| 684 |
+
model_s1 = self.model_fn(x_s1, s1)
|
| 685 |
+
if solver_type == 'dpmsolver':
|
| 686 |
+
x_t = (
|
| 687 |
+
torch.exp(log_alpha_t - log_alpha_s) * x
|
| 688 |
+
- (sigma_t * phi_1) * model_s
|
| 689 |
+
- (0.5 / r1) * (sigma_t * phi_1) * (model_s1 - model_s)
|
| 690 |
+
)
|
| 691 |
+
elif solver_type == 'taylor':
|
| 692 |
+
x_t = (
|
| 693 |
+
torch.exp(log_alpha_t - log_alpha_s) * x
|
| 694 |
+
- (sigma_t * phi_1) * model_s
|
| 695 |
+
- (1. / r1) * (sigma_t * (phi_1 / h - 1.)) * (model_s1 - model_s)
|
| 696 |
+
)
|
| 697 |
+
if return_intermediate:
|
| 698 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
| 699 |
+
else:
|
| 700 |
+
return x_t
|
| 701 |
+
|
| 702 |
+
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpmsolver'):
|
| 703 |
+
"""
|
| 704 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
| 705 |
+
|
| 706 |
+
Args:
|
| 707 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 708 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
| 709 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
| 710 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
| 711 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
| 712 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
| 713 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
| 714 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
| 715 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
| 716 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
| 717 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
| 718 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
| 719 |
+
Returns:
|
| 720 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 721 |
+
"""
|
| 722 |
+
if solver_type not in ['dpmsolver', 'taylor']:
|
| 723 |
+
raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
|
| 724 |
+
if r1 is None:
|
| 725 |
+
r1 = 1. / 3.
|
| 726 |
+
if r2 is None:
|
| 727 |
+
r2 = 2. / 3.
|
| 728 |
+
ns = self.noise_schedule
|
| 729 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
| 730 |
+
h = lambda_t - lambda_s
|
| 731 |
+
lambda_s1 = lambda_s + r1 * h
|
| 732 |
+
lambda_s2 = lambda_s + r2 * h
|
| 733 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
| 734 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
| 735 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
| 736 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
|
| 737 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
| 738 |
+
|
| 739 |
+
if self.algorithm_type == "dpmsolver++":
|
| 740 |
+
phi_11 = torch.expm1(-r1 * h)
|
| 741 |
+
phi_12 = torch.expm1(-r2 * h)
|
| 742 |
+
phi_1 = torch.expm1(-h)
|
| 743 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
| 744 |
+
phi_2 = phi_1 / h + 1.
|
| 745 |
+
phi_3 = phi_2 / h - 0.5
|
| 746 |
+
|
| 747 |
+
if model_s is None:
|
| 748 |
+
model_s = self.model_fn(x, s)
|
| 749 |
+
if model_s1 is None:
|
| 750 |
+
x_s1 = (
|
| 751 |
+
(sigma_s1 / sigma_s) * x
|
| 752 |
+
- (alpha_s1 * phi_11) * model_s
|
| 753 |
+
)
|
| 754 |
+
model_s1 = self.model_fn(x_s1, s1)
|
| 755 |
+
x_s2 = (
|
| 756 |
+
(sigma_s2 / sigma_s) * x
|
| 757 |
+
- (alpha_s2 * phi_12) * model_s
|
| 758 |
+
+ r2 / r1 * (alpha_s2 * phi_22) * (model_s1 - model_s)
|
| 759 |
+
)
|
| 760 |
+
model_s2 = self.model_fn(x_s2, s2)
|
| 761 |
+
if solver_type == 'dpmsolver':
|
| 762 |
+
x_t = (
|
| 763 |
+
(sigma_t / sigma_s) * x
|
| 764 |
+
- (alpha_t * phi_1) * model_s
|
| 765 |
+
+ (1. / r2) * (alpha_t * phi_2) * (model_s2 - model_s)
|
| 766 |
+
)
|
| 767 |
+
elif solver_type == 'taylor':
|
| 768 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
| 769 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
| 770 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
| 771 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
| 772 |
+
x_t = (
|
| 773 |
+
(sigma_t / sigma_s) * x
|
| 774 |
+
- (alpha_t * phi_1) * model_s
|
| 775 |
+
+ (alpha_t * phi_2) * D1
|
| 776 |
+
- (alpha_t * phi_3) * D2
|
| 777 |
+
)
|
| 778 |
+
else:
|
| 779 |
+
phi_11 = torch.expm1(r1 * h)
|
| 780 |
+
phi_12 = torch.expm1(r2 * h)
|
| 781 |
+
phi_1 = torch.expm1(h)
|
| 782 |
+
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
| 783 |
+
phi_2 = phi_1 / h - 1.
|
| 784 |
+
phi_3 = phi_2 / h - 0.5
|
| 785 |
+
|
| 786 |
+
if model_s is None:
|
| 787 |
+
model_s = self.model_fn(x, s)
|
| 788 |
+
if model_s1 is None:
|
| 789 |
+
x_s1 = (
|
| 790 |
+
(torch.exp(log_alpha_s1 - log_alpha_s)) * x
|
| 791 |
+
- (sigma_s1 * phi_11) * model_s
|
| 792 |
+
)
|
| 793 |
+
model_s1 = self.model_fn(x_s1, s1)
|
| 794 |
+
x_s2 = (
|
| 795 |
+
(torch.exp(log_alpha_s2 - log_alpha_s)) * x
|
| 796 |
+
- (sigma_s2 * phi_12) * model_s
|
| 797 |
+
- r2 / r1 * (sigma_s2 * phi_22) * (model_s1 - model_s)
|
| 798 |
+
)
|
| 799 |
+
model_s2 = self.model_fn(x_s2, s2)
|
| 800 |
+
if solver_type == 'dpmsolver':
|
| 801 |
+
x_t = (
|
| 802 |
+
(torch.exp(log_alpha_t - log_alpha_s)) * x
|
| 803 |
+
- (sigma_t * phi_1) * model_s
|
| 804 |
+
- (1. / r2) * (sigma_t * phi_2) * (model_s2 - model_s)
|
| 805 |
+
)
|
| 806 |
+
elif solver_type == 'taylor':
|
| 807 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
| 808 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
| 809 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
| 810 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
| 811 |
+
x_t = (
|
| 812 |
+
(torch.exp(log_alpha_t - log_alpha_s)) * x
|
| 813 |
+
- (sigma_t * phi_1) * model_s
|
| 814 |
+
- (sigma_t * phi_2) * D1
|
| 815 |
+
- (sigma_t * phi_3) * D2
|
| 816 |
+
)
|
| 817 |
+
|
| 818 |
+
if return_intermediate:
|
| 819 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
| 820 |
+
else:
|
| 821 |
+
return x_t
|
| 822 |
+
|
| 823 |
+
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"):
|
| 824 |
+
"""
|
| 825 |
+
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
| 826 |
+
|
| 827 |
+
Args:
|
| 828 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 829 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
| 830 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
|
| 831 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
| 832 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
| 833 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
| 834 |
+
Returns:
|
| 835 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 836 |
+
"""
|
| 837 |
+
if solver_type not in ['dpmsolver', 'taylor']:
|
| 838 |
+
raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
|
| 839 |
+
ns = self.noise_schedule
|
| 840 |
+
model_prev_1, model_prev_0 = model_prev_list[-2], model_prev_list[-1]
|
| 841 |
+
t_prev_1, t_prev_0 = t_prev_list[-2], t_prev_list[-1]
|
| 842 |
+
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
| 843 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
| 844 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
| 845 |
+
alpha_t = torch.exp(log_alpha_t)
|
| 846 |
+
|
| 847 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
| 848 |
+
h = lambda_t - lambda_prev_0
|
| 849 |
+
r0 = h_0 / h
|
| 850 |
+
D1_0 = (1. / r0) * (model_prev_0 - model_prev_1)
|
| 851 |
+
if self.algorithm_type == "dpmsolver++":
|
| 852 |
+
phi_1 = torch.expm1(-h)
|
| 853 |
+
if solver_type == 'dpmsolver':
|
| 854 |
+
x_t = (
|
| 855 |
+
(sigma_t / sigma_prev_0) * x
|
| 856 |
+
- (alpha_t * phi_1) * model_prev_0
|
| 857 |
+
- 0.5 * (alpha_t * phi_1) * D1_0
|
| 858 |
+
)
|
| 859 |
+
elif solver_type == 'taylor':
|
| 860 |
+
x_t = (
|
| 861 |
+
(sigma_t / sigma_prev_0) * x
|
| 862 |
+
- (alpha_t * phi_1) * model_prev_0
|
| 863 |
+
+ (alpha_t * (phi_1 / h + 1.)) * D1_0
|
| 864 |
+
)
|
| 865 |
+
else:
|
| 866 |
+
phi_1 = torch.expm1(h)
|
| 867 |
+
if solver_type == 'dpmsolver':
|
| 868 |
+
x_t = (
|
| 869 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
| 870 |
+
- (sigma_t * phi_1) * model_prev_0
|
| 871 |
+
- 0.5 * (sigma_t * phi_1) * D1_0
|
| 872 |
+
)
|
| 873 |
+
elif solver_type == 'taylor':
|
| 874 |
+
x_t = (
|
| 875 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
| 876 |
+
- (sigma_t * phi_1) * model_prev_0
|
| 877 |
+
- (sigma_t * (phi_1 / h - 1.)) * D1_0
|
| 878 |
+
)
|
| 879 |
+
return x_t
|
| 880 |
+
|
| 881 |
+
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpmsolver'):
|
| 882 |
+
"""
|
| 883 |
+
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
| 884 |
+
|
| 885 |
+
Args:
|
| 886 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 887 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
| 888 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
|
| 889 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
| 890 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
| 891 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
| 892 |
+
Returns:
|
| 893 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 894 |
+
"""
|
| 895 |
+
ns = self.noise_schedule
|
| 896 |
+
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
| 897 |
+
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
| 898 |
+
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
| 899 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
| 900 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
| 901 |
+
alpha_t = torch.exp(log_alpha_t)
|
| 902 |
+
|
| 903 |
+
h_1 = lambda_prev_1 - lambda_prev_2
|
| 904 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
| 905 |
+
h = lambda_t - lambda_prev_0
|
| 906 |
+
r0, r1 = h_0 / h, h_1 / h
|
| 907 |
+
D1_0 = (1. / r0) * (model_prev_0 - model_prev_1)
|
| 908 |
+
D1_1 = (1. / r1) * (model_prev_1 - model_prev_2)
|
| 909 |
+
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
|
| 910 |
+
D2 = (1. / (r0 + r1)) * (D1_0 - D1_1)
|
| 911 |
+
if self.algorithm_type == "dpmsolver++":
|
| 912 |
+
phi_1 = torch.expm1(-h)
|
| 913 |
+
phi_2 = phi_1 / h + 1.
|
| 914 |
+
phi_3 = phi_2 / h - 0.5
|
| 915 |
+
x_t = (
|
| 916 |
+
(sigma_t / sigma_prev_0) * x
|
| 917 |
+
- (alpha_t * phi_1) * model_prev_0
|
| 918 |
+
+ (alpha_t * phi_2) * D1
|
| 919 |
+
- (alpha_t * phi_3) * D2
|
| 920 |
+
)
|
| 921 |
+
else:
|
| 922 |
+
phi_1 = torch.expm1(h)
|
| 923 |
+
phi_2 = phi_1 / h - 1.
|
| 924 |
+
phi_3 = phi_2 / h - 0.5
|
| 925 |
+
x_t = (
|
| 926 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
| 927 |
+
- (sigma_t * phi_1) * model_prev_0
|
| 928 |
+
- (sigma_t * phi_2) * D1
|
| 929 |
+
- (sigma_t * phi_3) * D2
|
| 930 |
+
)
|
| 931 |
+
return x_t
|
| 932 |
+
|
| 933 |
+
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpmsolver', r1=None, r2=None):
|
| 934 |
+
"""
|
| 935 |
+
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
| 936 |
+
|
| 937 |
+
Args:
|
| 938 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 939 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
| 940 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
| 941 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
| 942 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
| 943 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
| 944 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
| 945 |
+
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
| 946 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
| 947 |
+
Returns:
|
| 948 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 949 |
+
"""
|
| 950 |
+
if order == 1:
|
| 951 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
| 952 |
+
elif order == 2:
|
| 953 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
|
| 954 |
+
elif order == 3:
|
| 955 |
+
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
|
| 956 |
+
else:
|
| 957 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
| 958 |
+
|
| 959 |
+
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpmsolver'):
|
| 960 |
+
"""
|
| 961 |
+
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
| 962 |
+
|
| 963 |
+
Args:
|
| 964 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 965 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
| 966 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
|
| 967 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
| 968 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
| 969 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
| 970 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
| 971 |
+
Returns:
|
| 972 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 973 |
+
"""
|
| 974 |
+
if order == 1:
|
| 975 |
+
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
| 976 |
+
elif order == 2:
|
| 977 |
+
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
| 978 |
+
elif order == 3:
|
| 979 |
+
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
| 980 |
+
else:
|
| 981 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
| 982 |
+
|
| 983 |
+
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpmsolver'):
|
| 984 |
+
"""
|
| 985 |
+
The adaptive step size solver based on singlestep DPM-Solver.
|
| 986 |
+
|
| 987 |
+
Args:
|
| 988 |
+
x: A pytorch tensor. The initial value at time `t_T`.
|
| 989 |
+
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
| 990 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
| 991 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
| 992 |
+
h_init: A `float`. The initial step size (for logSNR).
|
| 993 |
+
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
| 994 |
+
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
| 995 |
+
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
| 996 |
+
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
| 997 |
+
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
| 998 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
| 999 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
| 1000 |
+
Returns:
|
| 1001 |
+
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
| 1002 |
+
|
| 1003 |
+
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
| 1004 |
+
"""
|
| 1005 |
+
ns = self.noise_schedule
|
| 1006 |
+
s = t_T * torch.ones((1,)).to(x)
|
| 1007 |
+
lambda_s = ns.marginal_lambda(s)
|
| 1008 |
+
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
| 1009 |
+
h = h_init * torch.ones_like(s).to(x)
|
| 1010 |
+
x_prev = x
|
| 1011 |
+
nfe = 0
|
| 1012 |
+
if order == 2:
|
| 1013 |
+
r1 = 0.5
|
| 1014 |
+
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
| 1015 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
|
| 1016 |
+
elif order == 3:
|
| 1017 |
+
r1, r2 = 1. / 3., 2. / 3.
|
| 1018 |
+
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
|
| 1019 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
|
| 1020 |
+
else:
|
| 1021 |
+
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
| 1022 |
+
while torch.abs((s - t_0)).mean() > t_err:
|
| 1023 |
+
t = ns.inverse_lambda(lambda_s + h)
|
| 1024 |
+
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
| 1025 |
+
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
| 1026 |
+
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
| 1027 |
+
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
| 1028 |
+
E = norm_fn((x_higher - x_lower) / delta).max()
|
| 1029 |
+
if torch.all(E <= 1.):
|
| 1030 |
+
x = x_higher
|
| 1031 |
+
s = t
|
| 1032 |
+
x_prev = x_lower
|
| 1033 |
+
lambda_s = ns.marginal_lambda(s)
|
| 1034 |
+
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
| 1035 |
+
nfe += order
|
| 1036 |
+
print('adaptive solver nfe', nfe)
|
| 1037 |
+
return x
|
| 1038 |
+
|
| 1039 |
+
def add_noise(self, x, t, noise=None):
|
| 1040 |
+
"""
|
| 1041 |
+
Compute the noised input xt = alpha_t * x + sigma_t * noise.
|
| 1042 |
+
|
| 1043 |
+
Args:
|
| 1044 |
+
x: A `torch.Tensor` with shape `(batch_size, *shape)`.
|
| 1045 |
+
t: A `torch.Tensor` with shape `(t_size,)`.
|
| 1046 |
+
Returns:
|
| 1047 |
+
xt with shape `(t_size, batch_size, *shape)`.
|
| 1048 |
+
"""
|
| 1049 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
| 1050 |
+
if noise is None:
|
| 1051 |
+
noise = torch.randn((t.shape[0], *x.shape), device=x.device)
|
| 1052 |
+
x = x.reshape((-1, *x.shape))
|
| 1053 |
+
xt = expand_dims(alpha_t, x.dim()) * x + expand_dims(sigma_t, x.dim()) * noise
|
| 1054 |
+
if t.shape[0] == 1:
|
| 1055 |
+
return xt.squeeze(0)
|
| 1056 |
+
else:
|
| 1057 |
+
return xt
|
| 1058 |
+
|
| 1059 |
+
def inverse(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
|
| 1060 |
+
method='multistep', lower_order_final=True, denoise_to_zero=False, solver_type='dpmsolver',
|
| 1061 |
+
atol=0.0078, rtol=0.05, return_intermediate=False,
|
| 1062 |
+
):
|
| 1063 |
+
"""
|
| 1064 |
+
Inverse the sample `x` from time `t_start` to `t_end` by DPM-Solver.
|
| 1065 |
+
For discrete-time DPMs, we use `t_start=1/N`, where `N` is the total time steps during training.
|
| 1066 |
+
"""
|
| 1067 |
+
t_0 = 1. / self.noise_schedule.total_N if t_start is None else t_start
|
| 1068 |
+
t_T = self.noise_schedule.T if t_end is None else t_end
|
| 1069 |
+
assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
|
| 1070 |
+
return self.sample(x, steps=steps, t_start=t_0, t_end=t_T, order=order, skip_type=skip_type,
|
| 1071 |
+
method=method, lower_order_final=lower_order_final, denoise_to_zero=denoise_to_zero, solver_type=solver_type,
|
| 1072 |
+
atol=atol, rtol=rtol, return_intermediate=return_intermediate)
|
| 1073 |
+
|
| 1074 |
+
def sample(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
|
| 1075 |
+
method='multistep', lower_order_final=True, denoise_to_zero=False, solver_type='dpmsolver',
|
| 1076 |
+
atol=0.0078, rtol=0.05, return_intermediate=False,
|
| 1077 |
+
):
|
| 1078 |
+
"""
|
| 1079 |
+
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
| 1080 |
+
|
| 1081 |
+
=====================================================
|
| 1082 |
+
|
| 1083 |
+
We support the following algorithms for both noise prediction model and data prediction model:
|
| 1084 |
+
- 'singlestep':
|
| 1085 |
+
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
| 1086 |
+
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
| 1087 |
+
The total number of function evaluations (NFE) == `steps`.
|
| 1088 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
| 1089 |
+
- If `order` == 1:
|
| 1090 |
+
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
| 1091 |
+
- If `order` == 2:
|
| 1092 |
+
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
| 1093 |
+
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
| 1094 |
+
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
| 1095 |
+
- If `order` == 3:
|
| 1096 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
| 1097 |
+
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
| 1098 |
+
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
| 1099 |
+
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
| 1100 |
+
- 'multistep':
|
| 1101 |
+
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
| 1102 |
+
We initialize the first `order` values by lower order multistep solvers.
|
| 1103 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
| 1104 |
+
Denote K = steps.
|
| 1105 |
+
- If `order` == 1:
|
| 1106 |
+
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
| 1107 |
+
- If `order` == 2:
|
| 1108 |
+
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
| 1109 |
+
- If `order` == 3:
|
| 1110 |
+
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
| 1111 |
+
- 'singlestep_fixed':
|
| 1112 |
+
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
| 1113 |
+
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
| 1114 |
+
- 'adaptive':
|
| 1115 |
+
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
| 1116 |
+
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
| 1117 |
+
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
| 1118 |
+
(NFE) and the sample quality.
|
| 1119 |
+
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
| 1120 |
+
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
| 1121 |
+
|
| 1122 |
+
=====================================================
|
| 1123 |
+
|
| 1124 |
+
Some advices for choosing the algorithm:
|
| 1125 |
+
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
| 1126 |
+
Use singlestep DPM-Solver or DPM-Solver++ ("DPM-Solver-fast" in the paper) with `order = 3`.
|
| 1127 |
+
e.g., DPM-Solver:
|
| 1128 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver")
|
| 1129 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
| 1130 |
+
skip_type='time_uniform', method='singlestep')
|
| 1131 |
+
e.g., DPM-Solver++:
|
| 1132 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
|
| 1133 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
| 1134 |
+
skip_type='time_uniform', method='singlestep')
|
| 1135 |
+
- For **guided sampling with large guidance scale** by DPMs:
|
| 1136 |
+
Use multistep DPM-Solver with `algorithm_type="dpmsolver++"` and `order = 2`.
|
| 1137 |
+
e.g.
|
| 1138 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
|
| 1139 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
| 1140 |
+
skip_type='time_uniform', method='multistep')
|
| 1141 |
+
|
| 1142 |
+
We support three types of `skip_type`:
|
| 1143 |
+
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
| 1144 |
+
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
| 1145 |
+
- 'time_quadratic': quadratic time for the time steps.
|
| 1146 |
+
|
| 1147 |
+
=====================================================
|
| 1148 |
+
Args:
|
| 1149 |
+
x: A pytorch tensor. The initial value at time `t_start`
|
| 1150 |
+
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
| 1151 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
| 1152 |
+
t_start: A `float`. The starting time of the sampling.
|
| 1153 |
+
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
| 1154 |
+
t_end: A `float`. The ending time of the sampling.
|
| 1155 |
+
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
| 1156 |
+
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
| 1157 |
+
For discrete-time DPMs:
|
| 1158 |
+
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
| 1159 |
+
For continuous-time DPMs:
|
| 1160 |
+
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
| 1161 |
+
order: A `int`. The order of DPM-Solver.
|
| 1162 |
+
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
| 1163 |
+
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
| 1164 |
+
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
|
| 1165 |
+
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
|
| 1166 |
+
|
| 1167 |
+
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
|
| 1168 |
+
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
|
| 1169 |
+
for diffusion models sampling by diffusion SDEs for low-resolutional images
|
| 1170 |
+
(such as CIFAR-10). However, we observed that such trick does not matter for
|
| 1171 |
+
high-resolutional images. As it needs an additional NFE, we do not recommend
|
| 1172 |
+
it for high-resolutional images.
|
| 1173 |
+
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
|
| 1174 |
+
Only valid for `method=multistep` and `steps < 15`. We empirically find that
|
| 1175 |
+
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
|
| 1176 |
+
(especially for steps <= 10). So we recommend to set it to be `True`.
|
| 1177 |
+
solver_type: A `str`. The taylor expansion type for the solver. `dpmsolver` or `taylor`. We recommend `dpmsolver`.
|
| 1178 |
+
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
| 1179 |
+
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
| 1180 |
+
return_intermediate: A `bool`. Whether to save the xt at each step.
|
| 1181 |
+
When set to `True`, method returns a tuple (x0, intermediates); when set to False, method returns only x0.
|
| 1182 |
+
Returns:
|
| 1183 |
+
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
| 1184 |
+
|
| 1185 |
+
"""
|
| 1186 |
+
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
| 1187 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
| 1188 |
+
assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
|
| 1189 |
+
if return_intermediate:
|
| 1190 |
+
assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when saving intermediate values"
|
| 1191 |
+
if self.correcting_xt_fn is not None:
|
| 1192 |
+
assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when correcting_xt_fn is not None"
|
| 1193 |
+
device = x.device
|
| 1194 |
+
intermediates = []
|
| 1195 |
+
with torch.no_grad():
|
| 1196 |
+
if method == 'adaptive':
|
| 1197 |
+
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type)
|
| 1198 |
+
elif method == 'multistep':
|
| 1199 |
+
assert steps >= order
|
| 1200 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
| 1201 |
+
assert timesteps.shape[0] - 1 == steps
|
| 1202 |
+
# Init the initial values.
|
| 1203 |
+
step = 0
|
| 1204 |
+
t = timesteps[step]
|
| 1205 |
+
t_prev_list = [t]
|
| 1206 |
+
model_prev_list = [self.model_fn(x, t)]
|
| 1207 |
+
if self.correcting_xt_fn is not None:
|
| 1208 |
+
x = self.correcting_xt_fn(x, t, step)
|
| 1209 |
+
if return_intermediate:
|
| 1210 |
+
intermediates.append(x)
|
| 1211 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
| 1212 |
+
for step in range(1, order):
|
| 1213 |
+
t = timesteps[step]
|
| 1214 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, t, step, solver_type=solver_type)
|
| 1215 |
+
if self.correcting_xt_fn is not None:
|
| 1216 |
+
x = self.correcting_xt_fn(x, t, step)
|
| 1217 |
+
if return_intermediate:
|
| 1218 |
+
intermediates.append(x)
|
| 1219 |
+
t_prev_list.append(t)
|
| 1220 |
+
model_prev_list.append(self.model_fn(x, t))
|
| 1221 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
| 1222 |
+
for step in range(order, steps + 1):
|
| 1223 |
+
t = timesteps[step]
|
| 1224 |
+
# We only use lower order for steps < 10
|
| 1225 |
+
if lower_order_final and steps < 10:
|
| 1226 |
+
step_order = min(order, steps + 1 - step)
|
| 1227 |
+
else:
|
| 1228 |
+
step_order = order
|
| 1229 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, t, step_order, solver_type=solver_type)
|
| 1230 |
+
if self.correcting_xt_fn is not None:
|
| 1231 |
+
x = self.correcting_xt_fn(x, t, step)
|
| 1232 |
+
if return_intermediate:
|
| 1233 |
+
intermediates.append(x)
|
| 1234 |
+
for i in range(order - 1):
|
| 1235 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
| 1236 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
| 1237 |
+
t_prev_list[-1] = t
|
| 1238 |
+
# We do not need to evaluate the final model value.
|
| 1239 |
+
if step < steps:
|
| 1240 |
+
model_prev_list[-1] = self.model_fn(x, t)
|
| 1241 |
+
elif method in ['singlestep', 'singlestep_fixed']:
|
| 1242 |
+
if method == 'singlestep':
|
| 1243 |
+
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device)
|
| 1244 |
+
elif method == 'singlestep_fixed':
|
| 1245 |
+
K = steps // order
|
| 1246 |
+
orders = [order,] * K
|
| 1247 |
+
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
| 1248 |
+
for step, order in enumerate(orders):
|
| 1249 |
+
s, t = timesteps_outer[step], timesteps_outer[step + 1]
|
| 1250 |
+
timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=s.item(), t_0=t.item(), N=order, device=device)
|
| 1251 |
+
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
| 1252 |
+
h = lambda_inner[-1] - lambda_inner[0]
|
| 1253 |
+
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
| 1254 |
+
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
| 1255 |
+
x = self.singlestep_dpm_solver_update(x, s, t, order, solver_type=solver_type, r1=r1, r2=r2)
|
| 1256 |
+
if self.correcting_xt_fn is not None:
|
| 1257 |
+
x = self.correcting_xt_fn(x, t, step)
|
| 1258 |
+
if return_intermediate:
|
| 1259 |
+
intermediates.append(x)
|
| 1260 |
+
else:
|
| 1261 |
+
raise ValueError("Got wrong method {}".format(method))
|
| 1262 |
+
if denoise_to_zero:
|
| 1263 |
+
t = torch.ones((1,)).to(device) * t_0
|
| 1264 |
+
x = self.denoise_to_zero_fn(x, t)
|
| 1265 |
+
if self.correcting_xt_fn is not None:
|
| 1266 |
+
x = self.correcting_xt_fn(x, t, step + 1)
|
| 1267 |
+
if return_intermediate:
|
| 1268 |
+
intermediates.append(x)
|
| 1269 |
+
if return_intermediate:
|
| 1270 |
+
return x, intermediates
|
| 1271 |
+
else:
|
| 1272 |
+
return x
|
| 1273 |
+
|
| 1274 |
+
|
| 1275 |
+
|
| 1276 |
+
#############################################################
|
| 1277 |
+
# other utility functions
|
| 1278 |
+
#############################################################
|
| 1279 |
+
|
| 1280 |
+
def interpolate_fn(x, xp, yp):
|
| 1281 |
+
"""
|
| 1282 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
| 1283 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
| 1284 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
| 1285 |
+
|
| 1286 |
+
Args:
|
| 1287 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
| 1288 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
| 1289 |
+
yp: PyTorch tensor with shape [C, K].
|
| 1290 |
+
Returns:
|
| 1291 |
+
The function values f(x), with shape [N, C].
|
| 1292 |
+
"""
|
| 1293 |
+
N, K = x.shape[0], xp.shape[1]
|
| 1294 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
| 1295 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
| 1296 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
| 1297 |
+
cand_start_idx = x_idx - 1
|
| 1298 |
+
start_idx = torch.where(
|
| 1299 |
+
torch.eq(x_idx, 0),
|
| 1300 |
+
torch.tensor(1, device=x.device),
|
| 1301 |
+
torch.where(
|
| 1302 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
| 1303 |
+
),
|
| 1304 |
+
)
|
| 1305 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
| 1306 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
| 1307 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
| 1308 |
+
start_idx2 = torch.where(
|
| 1309 |
+
torch.eq(x_idx, 0),
|
| 1310 |
+
torch.tensor(0, device=x.device),
|
| 1311 |
+
torch.where(
|
| 1312 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
| 1313 |
+
),
|
| 1314 |
+
)
|
| 1315 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
| 1316 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
| 1317 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
| 1318 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
| 1319 |
+
return cand
|
| 1320 |
+
|
| 1321 |
+
|
| 1322 |
+
def expand_dims(v, dims):
|
| 1323 |
+
"""
|
| 1324 |
+
Expand the tensor `v` to the dim `dims`.
|
| 1325 |
+
|
| 1326 |
+
Args:
|
| 1327 |
+
`v`: a PyTorch tensor with shape [N].
|
| 1328 |
+
`dim`: a `int`.
|
| 1329 |
+
Returns:
|
| 1330 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
| 1331 |
+
"""
|
| 1332 |
+
return v[(...,) + (None,)*(dims - 1)]
|
src/dpm_solver/pipeline_dpm_solver.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from PIL import Image
|
| 3 |
+
|
| 4 |
+
from .dpm_solver_pytorch import (NoiseScheduleVP,
|
| 5 |
+
model_wrapper,
|
| 6 |
+
DPM_Solver)
|
| 7 |
+
|
| 8 |
+
class FontDiffuserDPMPipeline():
|
| 9 |
+
"""FontDiffuser pipeline with DPM_Solver scheduler.
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
model,
|
| 15 |
+
ddpm_train_scheduler,
|
| 16 |
+
version="V3",
|
| 17 |
+
model_type="noise",
|
| 18 |
+
guidance_type="classifier-free",
|
| 19 |
+
guidance_scale=7.5
|
| 20 |
+
):
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.model = model
|
| 23 |
+
self.train_scheduler_betas = ddpm_train_scheduler.betas
|
| 24 |
+
# Define the noise schedule
|
| 25 |
+
self.noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.train_scheduler_betas)
|
| 26 |
+
|
| 27 |
+
self.version = version
|
| 28 |
+
self.model_type = model_type
|
| 29 |
+
self.guidance_type = guidance_type
|
| 30 |
+
self.guidance_scale = guidance_scale
|
| 31 |
+
|
| 32 |
+
def numpy_to_pil(self, images):
|
| 33 |
+
"""Convert a numpy image or a batch of images to a PIL image.
|
| 34 |
+
"""
|
| 35 |
+
if images.ndim == 3:
|
| 36 |
+
images = images[None, ...]
|
| 37 |
+
images = (images * 255).round().astype("uint8")
|
| 38 |
+
pil_images = [Image.fromarray(image) for image in images]
|
| 39 |
+
|
| 40 |
+
return pil_images
|
| 41 |
+
|
| 42 |
+
def generate(
|
| 43 |
+
self,
|
| 44 |
+
content_images,
|
| 45 |
+
style_images,
|
| 46 |
+
batch_size,
|
| 47 |
+
order,
|
| 48 |
+
num_inference_step,
|
| 49 |
+
content_encoder_downsample_size,
|
| 50 |
+
t_start=None,
|
| 51 |
+
t_end=None,
|
| 52 |
+
dm_size=(96, 96),
|
| 53 |
+
algorithm_type="dpmsolver++",
|
| 54 |
+
skip_type="time_uniform",
|
| 55 |
+
method="multistep",
|
| 56 |
+
correcting_x0_fn=None,
|
| 57 |
+
generator=None,
|
| 58 |
+
):
|
| 59 |
+
model_kwargs = {}
|
| 60 |
+
model_kwargs["version"] = self.version
|
| 61 |
+
model_kwargs["content_encoder_downsample_size"] = content_encoder_downsample_size
|
| 62 |
+
|
| 63 |
+
cond = []
|
| 64 |
+
cond.append(content_images)
|
| 65 |
+
cond.append(style_images)
|
| 66 |
+
|
| 67 |
+
uncond = []
|
| 68 |
+
uncond_content_images = torch.ones_like(content_images).to(self.model.device)
|
| 69 |
+
uncond_style_images = torch.ones_like(style_images).to(self.model.device)
|
| 70 |
+
uncond.append(uncond_content_images)
|
| 71 |
+
uncond.append(uncond_style_images)
|
| 72 |
+
|
| 73 |
+
# 2.Convert the discrete-time model to the continuous-time
|
| 74 |
+
model_fn = model_wrapper(
|
| 75 |
+
model=self.model,
|
| 76 |
+
noise_schedule=self.noise_schedule,
|
| 77 |
+
model_type=self.model_type,
|
| 78 |
+
model_kwargs=model_kwargs,
|
| 79 |
+
guidance_type=self.guidance_type,
|
| 80 |
+
condition=cond,
|
| 81 |
+
unconditional_condition=uncond,
|
| 82 |
+
guidance_scale=self.guidance_scale
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# 3. Define dpm-solver and sample by multistep DPM-Solver.
|
| 86 |
+
# (We recommend multistep DPM-Solver for conditional sampling)
|
| 87 |
+
# You can adjust the `steps` to balance the computation costs and the sample quality.
|
| 88 |
+
dpm_solver = DPM_Solver(
|
| 89 |
+
model_fn=model_fn,
|
| 90 |
+
noise_schedule=self.noise_schedule,
|
| 91 |
+
algorithm_type=algorithm_type,
|
| 92 |
+
correcting_x0_fn=correcting_x0_fn
|
| 93 |
+
)
|
| 94 |
+
# If the DPM is defined on pixel-space images, you can further set `correcting_x0_fn="dynamic_thresholding"
|
| 95 |
+
|
| 96 |
+
# 4. Generate
|
| 97 |
+
# Sample gaussian noise to begin loop => [batch, 3, height, width]
|
| 98 |
+
x_T = torch.randn(
|
| 99 |
+
(batch_size, 3, dm_size[0], dm_size[1]),
|
| 100 |
+
generator=generator,
|
| 101 |
+
)
|
| 102 |
+
x_T = x_T.to(self.model.device)
|
| 103 |
+
|
| 104 |
+
x_sample = dpm_solver.sample(
|
| 105 |
+
x=x_T,
|
| 106 |
+
steps=num_inference_step,
|
| 107 |
+
order=order,
|
| 108 |
+
skip_type=skip_type,
|
| 109 |
+
method=method,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
x_sample = (x_sample / 2 + 0.5).clamp(0, 1)
|
| 113 |
+
x_sample = x_sample.cpu().permute(0, 2, 3, 1).numpy()
|
| 114 |
+
|
| 115 |
+
x_images = self.numpy_to_pil(x_sample)
|
| 116 |
+
|
| 117 |
+
return x_images
|
src/model.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
|
| 5 |
+
from diffusers import ModelMixin
|
| 6 |
+
from diffusers.configuration_utils import (ConfigMixin,
|
| 7 |
+
register_to_config)
|
| 8 |
+
|
| 9 |
+
class FontDiffuserModel(ModelMixin, ConfigMixin):
|
| 10 |
+
"""Forward function for FontDiffuer with content encoder \
|
| 11 |
+
style encoder and unet.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
@register_to_config
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
unet,
|
| 18 |
+
style_encoder,
|
| 19 |
+
content_encoder,
|
| 20 |
+
):
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.unet = unet
|
| 23 |
+
self.style_encoder = style_encoder
|
| 24 |
+
self.content_encoder = content_encoder
|
| 25 |
+
|
| 26 |
+
def forward(
|
| 27 |
+
self,
|
| 28 |
+
x_t,
|
| 29 |
+
timesteps,
|
| 30 |
+
style_images,
|
| 31 |
+
content_images,
|
| 32 |
+
content_encoder_downsample_size,
|
| 33 |
+
):
|
| 34 |
+
style_img_feature, _, _ = self.style_encoder(style_images)
|
| 35 |
+
|
| 36 |
+
batch_size, channel, height, width = style_img_feature.shape
|
| 37 |
+
style_hidden_states = style_img_feature.permute(0, 2, 3, 1).reshape(batch_size, height*width, channel)
|
| 38 |
+
|
| 39 |
+
# Get the content feature
|
| 40 |
+
content_img_feature, content_residual_features = self.content_encoder(content_images)
|
| 41 |
+
content_residual_features.append(content_img_feature)
|
| 42 |
+
# Get the content feature from reference image
|
| 43 |
+
style_content_feature, style_content_res_features = self.content_encoder(style_images)
|
| 44 |
+
style_content_res_features.append(style_content_feature)
|
| 45 |
+
|
| 46 |
+
input_hidden_states = [style_img_feature, content_residual_features, \
|
| 47 |
+
style_hidden_states, style_content_res_features]
|
| 48 |
+
|
| 49 |
+
out = self.unet(
|
| 50 |
+
x_t,
|
| 51 |
+
timesteps,
|
| 52 |
+
encoder_hidden_states=input_hidden_states,
|
| 53 |
+
content_encoder_downsample_size=content_encoder_downsample_size,
|
| 54 |
+
)
|
| 55 |
+
noise_pred = out[0]
|
| 56 |
+
offset_out_sum = out[1]
|
| 57 |
+
|
| 58 |
+
return noise_pred, offset_out_sum
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class FontDiffuserModelDPM(ModelMixin, ConfigMixin):
|
| 62 |
+
"""DPM Forward function for FontDiffuer with content encoder \
|
| 63 |
+
style encoder and unet.
|
| 64 |
+
"""
|
| 65 |
+
@register_to_config
|
| 66 |
+
def __init__(
|
| 67 |
+
self,
|
| 68 |
+
unet,
|
| 69 |
+
style_encoder,
|
| 70 |
+
content_encoder,
|
| 71 |
+
):
|
| 72 |
+
super().__init__()
|
| 73 |
+
self.unet = unet
|
| 74 |
+
self.style_encoder = style_encoder
|
| 75 |
+
self.content_encoder = content_encoder
|
| 76 |
+
|
| 77 |
+
def forward(
|
| 78 |
+
self,
|
| 79 |
+
x_t,
|
| 80 |
+
timesteps,
|
| 81 |
+
cond,
|
| 82 |
+
content_encoder_downsample_size,
|
| 83 |
+
version,
|
| 84 |
+
):
|
| 85 |
+
content_images = cond[0]
|
| 86 |
+
style_images = cond[1]
|
| 87 |
+
|
| 88 |
+
style_img_feature, _, style_residual_features = self.style_encoder(style_images)
|
| 89 |
+
|
| 90 |
+
batch_size, channel, height, width = style_img_feature.shape
|
| 91 |
+
style_hidden_states = style_img_feature.permute(0, 2, 3, 1).reshape(batch_size, height*width, channel)
|
| 92 |
+
|
| 93 |
+
# Get content feature
|
| 94 |
+
content_img_feture, content_residual_features = self.content_encoder(content_images)
|
| 95 |
+
content_residual_features.append(content_img_feture)
|
| 96 |
+
# Get the content feature from reference image
|
| 97 |
+
style_content_feature, style_content_res_features = self.content_encoder(style_images)
|
| 98 |
+
style_content_res_features.append(style_content_feature)
|
| 99 |
+
|
| 100 |
+
input_hidden_states = [style_img_feature, content_residual_features, style_hidden_states, style_content_res_features]
|
| 101 |
+
|
| 102 |
+
out = self.unet(
|
| 103 |
+
x_t,
|
| 104 |
+
timesteps,
|
| 105 |
+
encoder_hidden_states=input_hidden_states,
|
| 106 |
+
content_encoder_downsample_size=content_encoder_downsample_size,
|
| 107 |
+
)
|
| 108 |
+
noise_pred = out[0]
|
| 109 |
+
|
| 110 |
+
return noise_pred
|
src/modules/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .content_encoder import ContentEncoder
|
| 2 |
+
from .style_encoder import StyleEncoder
|
| 3 |
+
from .unet import UNet
|
src/modules/attention.py
ADDED
|
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class SpatialTransformer(nn.Module):
|
| 9 |
+
"""
|
| 10 |
+
Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
|
| 11 |
+
standard transformer action. Finally, reshape to image.
|
| 12 |
+
|
| 13 |
+
Parameters:
|
| 14 |
+
in_channels (:obj:`int`): The number of channels in the input and output.
|
| 15 |
+
n_heads (:obj:`int`): The number of heads to use for multi-head attention.
|
| 16 |
+
d_head (:obj:`int`): The number of channels in each head.
|
| 17 |
+
depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
| 18 |
+
dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use.
|
| 19 |
+
context_dim (:obj:`int`, *optional*): The number of context dimensions to use.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
def __init__(
|
| 23 |
+
self,
|
| 24 |
+
in_channels: int,
|
| 25 |
+
n_heads: int,
|
| 26 |
+
d_head: int,
|
| 27 |
+
depth: int = 1,
|
| 28 |
+
dropout: float = 0.0,
|
| 29 |
+
num_groups: int = 32,
|
| 30 |
+
context_dim: Optional[int] = None,
|
| 31 |
+
):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.n_heads = n_heads
|
| 34 |
+
self.d_head = d_head
|
| 35 |
+
self.in_channels = in_channels
|
| 36 |
+
inner_dim = n_heads * d_head
|
| 37 |
+
self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
| 38 |
+
|
| 39 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
| 40 |
+
|
| 41 |
+
self.transformer_blocks = nn.ModuleList(
|
| 42 |
+
[
|
| 43 |
+
BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
| 44 |
+
for d in range(depth)
|
| 45 |
+
]
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
| 49 |
+
|
| 50 |
+
def _set_attention_slice(self, slice_size):
|
| 51 |
+
for block in self.transformer_blocks:
|
| 52 |
+
block._set_attention_slice(slice_size)
|
| 53 |
+
|
| 54 |
+
def forward(self, hidden_states, context=None):
|
| 55 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
| 56 |
+
batch, channel, height, weight = hidden_states.shape
|
| 57 |
+
residual = hidden_states
|
| 58 |
+
hidden_states = self.norm(hidden_states)
|
| 59 |
+
hidden_states = self.proj_in(hidden_states)
|
| 60 |
+
inner_dim = hidden_states.shape[1]
|
| 61 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) # here change the shape torch.Size([1, 4096, 128])
|
| 62 |
+
for block in self.transformer_blocks:
|
| 63 |
+
hidden_states = block(hidden_states, context=context) # hidden_states: torch.Size([1, 4096, 128])
|
| 64 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2) # torch.Size([1, 128, 64, 64])
|
| 65 |
+
hidden_states = self.proj_out(hidden_states)
|
| 66 |
+
return hidden_states + residual
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class BasicTransformerBlock(nn.Module):
|
| 70 |
+
r"""
|
| 71 |
+
A basic Transformer block.
|
| 72 |
+
|
| 73 |
+
Parameters:
|
| 74 |
+
dim (:obj:`int`): The number of channels in the input and output.
|
| 75 |
+
n_heads (:obj:`int`): The number of heads to use for multi-head attention.
|
| 76 |
+
d_head (:obj:`int`): The number of channels in each head.
|
| 77 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 78 |
+
context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention.
|
| 79 |
+
gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network.
|
| 80 |
+
checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing.
|
| 81 |
+
"""
|
| 82 |
+
|
| 83 |
+
def __init__(
|
| 84 |
+
self,
|
| 85 |
+
dim: int,
|
| 86 |
+
n_heads: int,
|
| 87 |
+
d_head: int,
|
| 88 |
+
dropout=0.0,
|
| 89 |
+
context_dim: Optional[int] = None,
|
| 90 |
+
gated_ff: bool = True,
|
| 91 |
+
checkpoint: bool = True,
|
| 92 |
+
):
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.attn1 = CrossAttention(
|
| 95 |
+
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
| 96 |
+
) # is a self-attention
|
| 97 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 98 |
+
self.attn2 = CrossAttention(
|
| 99 |
+
query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
| 100 |
+
) # is self-attn if context is none
|
| 101 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 102 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 103 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 104 |
+
self.checkpoint = checkpoint
|
| 105 |
+
|
| 106 |
+
def _set_attention_slice(self, slice_size):
|
| 107 |
+
self.attn1._slice_size = slice_size
|
| 108 |
+
self.attn2._slice_size = slice_size
|
| 109 |
+
|
| 110 |
+
def forward(self, hidden_states, context=None):
|
| 111 |
+
hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states
|
| 112 |
+
hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states # hidden_states: torch.Size([1, 4096, 128])
|
| 113 |
+
hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states
|
| 114 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
| 115 |
+
return hidden_states
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class FeedForward(nn.Module):
|
| 119 |
+
r"""
|
| 120 |
+
A feed-forward layer.
|
| 121 |
+
|
| 122 |
+
Parameters:
|
| 123 |
+
dim (:obj:`int`): The number of channels in the input.
|
| 124 |
+
dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
| 125 |
+
mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
| 126 |
+
glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation.
|
| 127 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 128 |
+
"""
|
| 129 |
+
|
| 130 |
+
def __init__(
|
| 131 |
+
self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0
|
| 132 |
+
):
|
| 133 |
+
super().__init__()
|
| 134 |
+
inner_dim = int(dim * mult)
|
| 135 |
+
dim_out = dim_out if dim_out is not None else dim
|
| 136 |
+
project_in = GEGLU(dim, inner_dim)
|
| 137 |
+
|
| 138 |
+
self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
|
| 139 |
+
|
| 140 |
+
def forward(self, hidden_states):
|
| 141 |
+
return self.net(hidden_states)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
class GEGLU(nn.Module):
|
| 145 |
+
r"""
|
| 146 |
+
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
| 147 |
+
|
| 148 |
+
Parameters:
|
| 149 |
+
dim_in (:obj:`int`): The number of channels in the input.
|
| 150 |
+
dim_out (:obj:`int`): The number of channels in the output.
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
def __init__(self, dim_in: int, dim_out: int):
|
| 154 |
+
super().__init__()
|
| 155 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 156 |
+
|
| 157 |
+
def forward(self, hidden_states):
|
| 158 |
+
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
|
| 159 |
+
return hidden_states * F.gelu(gate)
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class CrossAttention(nn.Module):
|
| 163 |
+
r"""
|
| 164 |
+
A cross attention layer.
|
| 165 |
+
|
| 166 |
+
Parameters:
|
| 167 |
+
query_dim (:obj:`int`): The number of channels in the query.
|
| 168 |
+
context_dim (:obj:`int`, *optional*):
|
| 169 |
+
The number of channels in the context. If not given, defaults to `query_dim`.
|
| 170 |
+
heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
|
| 171 |
+
dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 172 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 173 |
+
"""
|
| 174 |
+
|
| 175 |
+
def __init__(
|
| 176 |
+
self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0
|
| 177 |
+
):
|
| 178 |
+
super().__init__()
|
| 179 |
+
inner_dim = dim_head * heads
|
| 180 |
+
context_dim = context_dim if context_dim is not None else query_dim
|
| 181 |
+
|
| 182 |
+
self.scale = dim_head**-0.5
|
| 183 |
+
self.heads = heads
|
| 184 |
+
# for slice_size > 0 the attention score computation
|
| 185 |
+
# is split across the batch axis to save memory
|
| 186 |
+
# You can set slice_size with `set_attention_slice`
|
| 187 |
+
self._slice_size = None
|
| 188 |
+
|
| 189 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 190 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 191 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 192 |
+
|
| 193 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
| 194 |
+
|
| 195 |
+
def reshape_heads_to_batch_dim(self, tensor):
|
| 196 |
+
batch_size, seq_len, dim = tensor.shape
|
| 197 |
+
head_size = self.heads
|
| 198 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
| 199 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
|
| 200 |
+
return tensor
|
| 201 |
+
|
| 202 |
+
def reshape_batch_dim_to_heads(self, tensor):
|
| 203 |
+
batch_size, seq_len, dim = tensor.shape
|
| 204 |
+
head_size = self.heads
|
| 205 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
| 206 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
| 207 |
+
return tensor
|
| 208 |
+
|
| 209 |
+
def forward(self, hidden_states, context=None, mask=None):
|
| 210 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
| 211 |
+
|
| 212 |
+
query = self.to_q(hidden_states)
|
| 213 |
+
context = context if context is not None else hidden_states
|
| 214 |
+
key = self.to_k(context)
|
| 215 |
+
value = self.to_v(context)
|
| 216 |
+
|
| 217 |
+
dim = query.shape[-1]
|
| 218 |
+
|
| 219 |
+
query = self.reshape_heads_to_batch_dim(query)
|
| 220 |
+
key = self.reshape_heads_to_batch_dim(key)
|
| 221 |
+
value = self.reshape_heads_to_batch_dim(value)
|
| 222 |
+
|
| 223 |
+
# TODO(PVP) - mask is currently never used. Remember to re-implement when used
|
| 224 |
+
|
| 225 |
+
# attention, what we cannot get enough of
|
| 226 |
+
|
| 227 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
| 228 |
+
hidden_states = self._attention(query, key, value)
|
| 229 |
+
else:
|
| 230 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
|
| 231 |
+
|
| 232 |
+
return self.to_out(hidden_states)
|
| 233 |
+
|
| 234 |
+
def _attention(self, query, key, value):
|
| 235 |
+
# TODO: use baddbmm for better performance
|
| 236 |
+
attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale
|
| 237 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
| 238 |
+
# compute attention output
|
| 239 |
+
hidden_states = torch.matmul(attention_probs, value)
|
| 240 |
+
# reshape hidden_states
|
| 241 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
| 242 |
+
return hidden_states
|
| 243 |
+
|
| 244 |
+
def _sliced_attention(self, query, key, value, sequence_length, dim):
|
| 245 |
+
batch_size_attention = query.shape[0]
|
| 246 |
+
hidden_states = torch.zeros(
|
| 247 |
+
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
|
| 248 |
+
)
|
| 249 |
+
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
|
| 250 |
+
for i in range(hidden_states.shape[0] // slice_size):
|
| 251 |
+
start_idx = i * slice_size
|
| 252 |
+
end_idx = (i + 1) * slice_size
|
| 253 |
+
attn_slice = (
|
| 254 |
+
torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale
|
| 255 |
+
) # TODO: use baddbmm for better performance
|
| 256 |
+
attn_slice = attn_slice.softmax(dim=-1)
|
| 257 |
+
attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx])
|
| 258 |
+
|
| 259 |
+
hidden_states[start_idx:end_idx] = attn_slice
|
| 260 |
+
|
| 261 |
+
# reshape hidden_states
|
| 262 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
| 263 |
+
return hidden_states
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
class OffsetRefStrucInter(nn.Module):
|
| 267 |
+
|
| 268 |
+
def __init__(
|
| 269 |
+
self,
|
| 270 |
+
res_in_channels: int,
|
| 271 |
+
style_feat_in_channels: int,
|
| 272 |
+
n_heads: int,
|
| 273 |
+
num_groups: int = 32,
|
| 274 |
+
dropout: float = 0.0,
|
| 275 |
+
gated_ff: bool = True,
|
| 276 |
+
):
|
| 277 |
+
super().__init__()
|
| 278 |
+
# style feat projecter
|
| 279 |
+
self.style_proj_in = nn.Conv2d(style_feat_in_channels, style_feat_in_channels, kernel_size=1, stride=1, padding=0)
|
| 280 |
+
self.gnorm_s = torch.nn.GroupNorm(num_groups=num_groups, num_channels=style_feat_in_channels, eps=1e-6, affine=True)
|
| 281 |
+
self.ln_s = nn.LayerNorm(style_feat_in_channels)
|
| 282 |
+
|
| 283 |
+
# content feat projecter
|
| 284 |
+
self.content_proj_in = nn.Conv2d(res_in_channels, res_in_channels, kernel_size=1, stride=1, padding=0)
|
| 285 |
+
self.gnorm_c = torch.nn.GroupNorm(num_groups=num_groups, num_channels=res_in_channels, eps=1e-6, affine=True)
|
| 286 |
+
self.ln_c = nn.LayerNorm(res_in_channels)
|
| 287 |
+
|
| 288 |
+
# cross-attention
|
| 289 |
+
# dim_head is the middle dealing dimension, output dimension will be change to quert_dim by Linear
|
| 290 |
+
self.cross_attention = CrossAttention(
|
| 291 |
+
query_dim=style_feat_in_channels, context_dim=res_in_channels, heads=n_heads, dim_head=res_in_channels, dropout=dropout
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
# FFN
|
| 295 |
+
self.ff = FeedForward(style_feat_in_channels, dropout=dropout, glu=gated_ff)
|
| 296 |
+
self.ln_ff = nn.LayerNorm(style_feat_in_channels)
|
| 297 |
+
|
| 298 |
+
self.gnorm_out = torch.nn.GroupNorm(num_groups=num_groups, num_channels=style_feat_in_channels, eps=1e-6, affine=True)
|
| 299 |
+
self.proj_out = nn.Conv2d(style_feat_in_channels, 1*2*3*3, kernel_size=1, stride=1, padding=0)
|
| 300 |
+
|
| 301 |
+
def forward(self, res_hidden_states, style_content_hidden_states):
|
| 302 |
+
batch, c_channel, height, width = res_hidden_states.shape
|
| 303 |
+
_, s_channel, _, _ = style_content_hidden_states.shape
|
| 304 |
+
# style projecter
|
| 305 |
+
style_content_hidden_states = self.gnorm_s(style_content_hidden_states)
|
| 306 |
+
style_content_hidden_states = self.style_proj_in(style_content_hidden_states)
|
| 307 |
+
|
| 308 |
+
style_content_hidden_states = style_content_hidden_states.permute(0, 2, 3, 1).reshape(batch, height*width, s_channel)
|
| 309 |
+
style_content_hidden_states = self.ln_s(style_content_hidden_states)
|
| 310 |
+
|
| 311 |
+
# content projecter
|
| 312 |
+
res_hidden_states = self.gnorm_c(res_hidden_states)
|
| 313 |
+
res_hidden_states = self.content_proj_in(res_hidden_states)
|
| 314 |
+
|
| 315 |
+
res_hidden_states = res_hidden_states.permute(0, 2, 3, 1).reshape(batch, height*width, c_channel)
|
| 316 |
+
res_hidden_states = self.ln_c(res_hidden_states)
|
| 317 |
+
|
| 318 |
+
# style and content cross-attention
|
| 319 |
+
hidden_states = self.cross_attention(style_content_hidden_states, context=res_hidden_states)
|
| 320 |
+
|
| 321 |
+
# ffn
|
| 322 |
+
hidden_states = self.ff(self.ln_ff(hidden_states)) + hidden_states
|
| 323 |
+
|
| 324 |
+
# reshape
|
| 325 |
+
_, _, c = hidden_states.shape
|
| 326 |
+
reshape_out = hidden_states.permute(0, 2, 1).reshape(batch, c, height, width)
|
| 327 |
+
|
| 328 |
+
# projert out
|
| 329 |
+
reshape_out = self.gnorm_out(reshape_out)
|
| 330 |
+
offset_out = self.proj_out(reshape_out)
|
| 331 |
+
|
| 332 |
+
return offset_out
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
class SELayer(nn.Module):
|
| 336 |
+
def __init__(self, channel, reduction=16):
|
| 337 |
+
super().__init__()
|
| 338 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 339 |
+
self.fc = nn.Sequential(
|
| 340 |
+
nn.Linear(channel, channel // reduction, bias=False),
|
| 341 |
+
# nn.ReLU(inplace=True),
|
| 342 |
+
nn.SiLU(),
|
| 343 |
+
nn.Linear(channel // reduction, channel, bias=False),
|
| 344 |
+
nn.Sigmoid()
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
def forward(self, x):
|
| 348 |
+
b, c, _, _ = x.size()
|
| 349 |
+
y = self.avg_pool(x).view(b, c)
|
| 350 |
+
y = self.fc(y).view(b, c, 1, 1)
|
| 351 |
+
return x * y.expand_as(x)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
class Mish(torch.nn.Module):
|
| 355 |
+
def forward(self, hidden_states):
|
| 356 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
class ChannelAttnBlock(nn.Module):
|
| 360 |
+
"""This is the Channel Attention in MCA.
|
| 361 |
+
"""
|
| 362 |
+
def __init__(
|
| 363 |
+
self,
|
| 364 |
+
in_channels,
|
| 365 |
+
out_channels,
|
| 366 |
+
groups=32,
|
| 367 |
+
groups_out=None,
|
| 368 |
+
eps=1e-6,
|
| 369 |
+
non_linearity="swish",
|
| 370 |
+
channel_attn=False,
|
| 371 |
+
reduction=32):
|
| 372 |
+
super().__init__()
|
| 373 |
+
|
| 374 |
+
if groups_out is None:
|
| 375 |
+
groups_out = groups
|
| 376 |
+
|
| 377 |
+
self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
| 378 |
+
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1)
|
| 379 |
+
|
| 380 |
+
if non_linearity == "swish":
|
| 381 |
+
self.nonlinearity = lambda x: F.silu(x)
|
| 382 |
+
elif non_linearity == "mish":
|
| 383 |
+
self.nonlinearity = Mish()
|
| 384 |
+
elif non_linearity == "silu":
|
| 385 |
+
self.nonlinearity = nn.SiLU()
|
| 386 |
+
|
| 387 |
+
self.channel_attn = channel_attn
|
| 388 |
+
if self.channel_attn:
|
| 389 |
+
# SE Attention
|
| 390 |
+
self.se_channel_attn = SELayer(channel=in_channels, reduction=reduction)
|
| 391 |
+
|
| 392 |
+
# Down channel: Use the conv1*1 to down the channel wise
|
| 393 |
+
self.norm3 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
| 394 |
+
self.down_channel = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1) # conv1*1
|
| 395 |
+
|
| 396 |
+
def forward(self, input, content_feature):
|
| 397 |
+
|
| 398 |
+
concat_feature = torch.cat([input, content_feature], dim=1)
|
| 399 |
+
hidden_states = concat_feature
|
| 400 |
+
|
| 401 |
+
hidden_states = self.norm1(hidden_states)
|
| 402 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 403 |
+
hidden_states = self.conv1(hidden_states)
|
| 404 |
+
|
| 405 |
+
if self.channel_attn:
|
| 406 |
+
hidden_states = self.se_channel_attn(hidden_states)
|
| 407 |
+
hidden_states = hidden_states + concat_feature
|
| 408 |
+
|
| 409 |
+
# Down channel
|
| 410 |
+
hidden_states = self.norm3(hidden_states)
|
| 411 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 412 |
+
hidden_states = self.down_channel(hidden_states)
|
| 413 |
+
|
| 414 |
+
return hidden_states
|
src/modules/content_encoder.py
ADDED
|
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from torch.nn import init
|
| 7 |
+
from torch.nn import Parameter as P
|
| 8 |
+
|
| 9 |
+
from diffusers import ModelMixin
|
| 10 |
+
from diffusers.configuration_utils import (ConfigMixin,
|
| 11 |
+
register_to_config)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def proj(x, y):
|
| 15 |
+
return torch.mm(y, x.t()) * y / torch.mm(y, y.t())
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def gram_schmidt(x, ys):
|
| 19 |
+
for y in ys:
|
| 20 |
+
x = x - proj(x, y)
|
| 21 |
+
return x
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def power_iteration(W, u_, update=True, eps=1e-12):
|
| 25 |
+
us, vs, svs = [], [], []
|
| 26 |
+
for i, u in enumerate(u_):
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
v = torch.matmul(u, W)
|
| 29 |
+
v = F.normalize(gram_schmidt(v, vs), eps=eps)
|
| 30 |
+
vs += [v]
|
| 31 |
+
u = torch.matmul(v, W.t())
|
| 32 |
+
u = F.normalize(gram_schmidt(u, us), eps=eps)
|
| 33 |
+
us += [u]
|
| 34 |
+
if update:
|
| 35 |
+
u_[i][:] = u
|
| 36 |
+
svs += [torch.squeeze(torch.matmul(torch.matmul(v, W.t()), u.t()))]
|
| 37 |
+
return svs, us, vs
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class LinearBlock(nn.Module):
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
in_dim,
|
| 44 |
+
out_dim,
|
| 45 |
+
norm='none',
|
| 46 |
+
act='relu',
|
| 47 |
+
use_sn=False
|
| 48 |
+
):
|
| 49 |
+
super(LinearBlock, self).__init__()
|
| 50 |
+
use_bias = True
|
| 51 |
+
self.fc = nn.Linear(in_dim, out_dim, bias=use_bias)
|
| 52 |
+
if use_sn:
|
| 53 |
+
self.fc = nn.utils.spectral_norm(self.fc)
|
| 54 |
+
|
| 55 |
+
# initialize normalization
|
| 56 |
+
norm_dim = out_dim
|
| 57 |
+
if norm == 'bn':
|
| 58 |
+
self.norm = nn.BatchNorm1d(norm_dim)
|
| 59 |
+
elif norm == 'in':
|
| 60 |
+
self.norm = nn.InstanceNorm1d(norm_dim)
|
| 61 |
+
elif norm == 'none':
|
| 62 |
+
self.norm = None
|
| 63 |
+
else:
|
| 64 |
+
assert 0, "Unsupported normalization: {}".format(norm)
|
| 65 |
+
|
| 66 |
+
# initialize activation
|
| 67 |
+
if act == 'relu':
|
| 68 |
+
self.activation = nn.ReLU(inplace=True)
|
| 69 |
+
elif act == 'lrelu':
|
| 70 |
+
self.activation = nn.LeakyReLU(0.2, inplace=True)
|
| 71 |
+
elif act == 'tanh':
|
| 72 |
+
self.activation = nn.Tanh()
|
| 73 |
+
elif act == 'none':
|
| 74 |
+
self.activation = None
|
| 75 |
+
else:
|
| 76 |
+
assert 0, "Unsupported activation: {}".format(act)
|
| 77 |
+
|
| 78 |
+
def forward(self, x):
|
| 79 |
+
out = self.fc(x)
|
| 80 |
+
if self.norm:
|
| 81 |
+
out = self.norm(out)
|
| 82 |
+
if self.activation:
|
| 83 |
+
out = self.activation(out)
|
| 84 |
+
return out
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class MLP(nn.Module):
|
| 88 |
+
def __init__(
|
| 89 |
+
self,
|
| 90 |
+
nf_in,
|
| 91 |
+
nf_out,
|
| 92 |
+
nf_mlp,
|
| 93 |
+
num_blocks,
|
| 94 |
+
norm,
|
| 95 |
+
act,
|
| 96 |
+
use_sn =False
|
| 97 |
+
):
|
| 98 |
+
super(MLP,self).__init__()
|
| 99 |
+
self.model = nn.ModuleList()
|
| 100 |
+
nf = nf_mlp
|
| 101 |
+
self.model.append(LinearBlock(nf_in, nf, norm = norm, act = act, use_sn = use_sn))
|
| 102 |
+
for _ in range((num_blocks - 2)):
|
| 103 |
+
self.model.append(LinearBlock(nf, nf, norm=norm, act=act, use_sn=use_sn))
|
| 104 |
+
self.model.append(LinearBlock(nf, nf_out, norm='none', act ='none', use_sn = use_sn))
|
| 105 |
+
self.model = nn.Sequential(*self.model)
|
| 106 |
+
|
| 107 |
+
def forward(self, x):
|
| 108 |
+
return self.model(x.view(x.size(0), -1))
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class SN(object):
|
| 112 |
+
def __init__(
|
| 113 |
+
self,
|
| 114 |
+
num_svs,
|
| 115 |
+
num_itrs,
|
| 116 |
+
num_outputs,
|
| 117 |
+
transpose=False,
|
| 118 |
+
eps=1e-12
|
| 119 |
+
):
|
| 120 |
+
self.num_itrs = num_itrs
|
| 121 |
+
self.num_svs = num_svs
|
| 122 |
+
self.transpose = transpose
|
| 123 |
+
self.eps = eps
|
| 124 |
+
for i in range(self.num_svs):
|
| 125 |
+
self.register_buffer('u%d' % i, torch.randn(1, num_outputs))
|
| 126 |
+
self.register_buffer('sv%d' % i, torch.ones(1))
|
| 127 |
+
|
| 128 |
+
@property
|
| 129 |
+
def u(self):
|
| 130 |
+
return [getattr(self, 'u%d' % i) for i in range(self.num_svs)]
|
| 131 |
+
|
| 132 |
+
@property
|
| 133 |
+
def sv(self):
|
| 134 |
+
return [getattr(self, 'sv%d' % i) for i in range(self.num_svs)]
|
| 135 |
+
|
| 136 |
+
def W_(self):
|
| 137 |
+
W_mat = self.weight.view(self.weight.size(0), -1)
|
| 138 |
+
if self.transpose:
|
| 139 |
+
W_mat = W_mat.t()
|
| 140 |
+
for _ in range(self.num_itrs):
|
| 141 |
+
svs, us, vs = power_iteration(W_mat, self.u, update=self.training, eps=self.eps)
|
| 142 |
+
if self.training:
|
| 143 |
+
with torch.no_grad():
|
| 144 |
+
for i, sv in enumerate(svs):
|
| 145 |
+
self.sv[i][:] = sv
|
| 146 |
+
return self.weight / svs[0]
|
| 147 |
+
|
| 148 |
+
class SNConv2d(nn.Conv2d, SN):
|
| 149 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
| 150 |
+
padding=0, dilation=1, groups=1, bias=True,
|
| 151 |
+
num_svs=1, num_itrs=1, eps=1e-12):
|
| 152 |
+
nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, stride,
|
| 153 |
+
padding, dilation, groups, bias)
|
| 154 |
+
SN.__init__(self, num_svs, num_itrs, out_channels, eps=eps)
|
| 155 |
+
|
| 156 |
+
def forward(self, x):
|
| 157 |
+
return F.conv2d(x, self.W_(), self.bias, self.stride,
|
| 158 |
+
self.padding, self.dilation, self.groups)
|
| 159 |
+
|
| 160 |
+
def forward_wo_sn(self, x):
|
| 161 |
+
return F.conv2d(x, self.weight, self.bias, self.stride,
|
| 162 |
+
self.padding, self.dilation, self.groups)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class SNLinear(nn.Linear, SN):
|
| 166 |
+
def __init__(self, in_features, out_features, bias=True,
|
| 167 |
+
num_svs=1, num_itrs=1, eps=1e-12):
|
| 168 |
+
nn.Linear.__init__(self, in_features, out_features, bias)
|
| 169 |
+
SN.__init__(self, num_svs, num_itrs, out_features, eps=eps)
|
| 170 |
+
|
| 171 |
+
def forward(self, x):
|
| 172 |
+
return F.linear(x, self.W_(), self.bias)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class Attention(nn.Module):
|
| 176 |
+
def __init__(
|
| 177 |
+
self,
|
| 178 |
+
ch,
|
| 179 |
+
which_conv=SNConv2d,
|
| 180 |
+
name='attention'
|
| 181 |
+
):
|
| 182 |
+
super(Attention, self).__init__()
|
| 183 |
+
self.ch = ch
|
| 184 |
+
self.which_conv = which_conv
|
| 185 |
+
self.theta = self.which_conv(self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False)
|
| 186 |
+
self.phi = self.which_conv(self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False)
|
| 187 |
+
self.g = self.which_conv(self.ch, self.ch // 2, kernel_size=1, padding=0, bias=False)
|
| 188 |
+
self.o = self.which_conv(self.ch // 2, self.ch, kernel_size=1, padding=0, bias=False)
|
| 189 |
+
# Learnable gain parameter
|
| 190 |
+
self.gamma = P(torch.tensor(0.), requires_grad=True)
|
| 191 |
+
|
| 192 |
+
def forward(self, x, y=None):
|
| 193 |
+
theta = self.theta(x)
|
| 194 |
+
phi = F.max_pool2d(self.phi(x), [2,2])
|
| 195 |
+
g = F.max_pool2d(self.g(x), [2,2])
|
| 196 |
+
|
| 197 |
+
theta = theta.view(-1, self. ch // 8, x.shape[2] * x.shape[3])
|
| 198 |
+
phi = phi.view(-1, self. ch // 8, x.shape[2] * x.shape[3] // 4)
|
| 199 |
+
g = g.view(-1, self. ch // 2, x.shape[2] * x.shape[3] // 4)
|
| 200 |
+
|
| 201 |
+
beta = F.softmax(torch.bmm(theta.transpose(1, 2), phi), -1)
|
| 202 |
+
|
| 203 |
+
o = self.o(torch.bmm(g, beta.transpose(1,2)).view(-1, self.ch // 2, x.shape[2], x.shape[3]))
|
| 204 |
+
return self.gamma * o + x
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
class DBlock(nn.Module):
|
| 208 |
+
def __init__(self, in_channels, out_channels, which_conv=SNConv2d, wide=True,
|
| 209 |
+
preactivation=False, activation=None, downsample=None,):
|
| 210 |
+
super(DBlock, self).__init__()
|
| 211 |
+
|
| 212 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
| 213 |
+
|
| 214 |
+
self.hidden_channels = self.out_channels if wide else self.in_channels
|
| 215 |
+
self.which_conv = which_conv
|
| 216 |
+
self.preactivation = preactivation
|
| 217 |
+
self.activation = activation
|
| 218 |
+
self.downsample = downsample
|
| 219 |
+
|
| 220 |
+
# Conv layers
|
| 221 |
+
self.conv1 = self.which_conv(self.in_channels, self.hidden_channels)
|
| 222 |
+
self.conv2 = self.which_conv(self.hidden_channels, self.out_channels)
|
| 223 |
+
self.learnable_sc = True if (in_channels != out_channels) or downsample else False
|
| 224 |
+
if self.learnable_sc:
|
| 225 |
+
self.conv_sc = self.which_conv(in_channels, out_channels,
|
| 226 |
+
kernel_size=1, padding=0)
|
| 227 |
+
def shortcut(self, x):
|
| 228 |
+
if self.preactivation:
|
| 229 |
+
if self.learnable_sc:
|
| 230 |
+
x = self.conv_sc(x)
|
| 231 |
+
if self.downsample:
|
| 232 |
+
x = self.downsample(x)
|
| 233 |
+
else:
|
| 234 |
+
if self.downsample:
|
| 235 |
+
x = self.downsample(x)
|
| 236 |
+
if self.learnable_sc:
|
| 237 |
+
x = self.conv_sc(x)
|
| 238 |
+
return x
|
| 239 |
+
|
| 240 |
+
def forward(self, x):
|
| 241 |
+
if self.preactivation:
|
| 242 |
+
h = F.relu(x)
|
| 243 |
+
else:
|
| 244 |
+
h = x
|
| 245 |
+
h = self.conv1(h)
|
| 246 |
+
h = self.conv2(self.activation(h))
|
| 247 |
+
if self.downsample:
|
| 248 |
+
h = self.downsample(h)
|
| 249 |
+
|
| 250 |
+
return h + self.shortcut(x)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
class GBlock(nn.Module):
|
| 254 |
+
def __init__(self, in_channels, out_channels,
|
| 255 |
+
which_conv=nn.Conv2d,which_bn= nn.BatchNorm2d, activation=None,
|
| 256 |
+
upsample=None):
|
| 257 |
+
super(GBlock, self).__init__()
|
| 258 |
+
|
| 259 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
| 260 |
+
self.which_conv,self.which_bn =which_conv, which_bn
|
| 261 |
+
self.activation = activation
|
| 262 |
+
self.upsample = upsample
|
| 263 |
+
# Conv layers
|
| 264 |
+
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
|
| 265 |
+
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
|
| 266 |
+
self.learnable_sc = in_channels != out_channels or upsample
|
| 267 |
+
if self.learnable_sc:
|
| 268 |
+
self.conv_sc = self.which_conv(in_channels, out_channels,
|
| 269 |
+
kernel_size=1, padding=0)
|
| 270 |
+
# Batchnorm layers
|
| 271 |
+
self.bn1 = self.which_bn(in_channels)
|
| 272 |
+
self.bn2 = self.which_bn(out_channels)
|
| 273 |
+
# upsample layers
|
| 274 |
+
self.upsample = upsample
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def forward(self, x):
|
| 278 |
+
h = self.activation(self.bn1(x))
|
| 279 |
+
if self.upsample:
|
| 280 |
+
h = self.upsample(h)
|
| 281 |
+
x = self.upsample(x)
|
| 282 |
+
h = self.conv1(h)
|
| 283 |
+
h = self.activation(self.bn2(h))
|
| 284 |
+
h = self.conv2(h)
|
| 285 |
+
if self.learnable_sc:
|
| 286 |
+
x = self.conv_sc(x)
|
| 287 |
+
return h + x
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
class GBlock2(nn.Module):
|
| 291 |
+
def __init__(self, in_channels, out_channels,
|
| 292 |
+
which_conv=nn.Conv2d, activation=None,
|
| 293 |
+
upsample=None, skip_connection = True):
|
| 294 |
+
super(GBlock2, self).__init__()
|
| 295 |
+
|
| 296 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
| 297 |
+
self.which_conv = which_conv
|
| 298 |
+
self.activation = activation
|
| 299 |
+
self.upsample = upsample
|
| 300 |
+
|
| 301 |
+
# Conv layers
|
| 302 |
+
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
|
| 303 |
+
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
|
| 304 |
+
self.learnable_sc = in_channels != out_channels or upsample
|
| 305 |
+
if self.learnable_sc:
|
| 306 |
+
self.conv_sc = self.which_conv(in_channels, out_channels,
|
| 307 |
+
kernel_size=1, padding=0)
|
| 308 |
+
|
| 309 |
+
# upsample layers
|
| 310 |
+
self.upsample = upsample
|
| 311 |
+
self.skip_connection = skip_connection
|
| 312 |
+
|
| 313 |
+
def forward(self, x):
|
| 314 |
+
h = self.activation(x)
|
| 315 |
+
if self.upsample:
|
| 316 |
+
h = self.upsample(h)
|
| 317 |
+
x = self.upsample(x)
|
| 318 |
+
h = self.conv1(h)
|
| 319 |
+
|
| 320 |
+
h = self.activation(h)
|
| 321 |
+
h = self.conv2(h)
|
| 322 |
+
|
| 323 |
+
if self.learnable_sc:
|
| 324 |
+
x = self.conv_sc(x)
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
if self.skip_connection:
|
| 328 |
+
out = h + x
|
| 329 |
+
else:
|
| 330 |
+
out = h
|
| 331 |
+
return out
|
| 332 |
+
|
| 333 |
+
def content_encoder_arch(ch =64,out_channel_multiplier = 1, input_nc = 3):
|
| 334 |
+
arch = {}
|
| 335 |
+
n=2
|
| 336 |
+
arch[80] = {'in_channels': [input_nc] + [ch*item for item in [1,2]],
|
| 337 |
+
'out_channels' : [item * ch for item in [1,2,4]],
|
| 338 |
+
'resolution': [40,20,10]}
|
| 339 |
+
arch[96] = {'in_channels': [input_nc] + [ch*item for item in [1,2]],
|
| 340 |
+
'out_channels' : [item * ch for item in [1,2,4]],
|
| 341 |
+
'resolution': [48,24,12]}
|
| 342 |
+
|
| 343 |
+
arch[128] = {'in_channels': [input_nc] + [ch*item for item in [1,2,4,8]],
|
| 344 |
+
'out_channels' : [item * ch for item in [1,2,4,8,16]],
|
| 345 |
+
'resolution': [64,32,16,8,4]}
|
| 346 |
+
|
| 347 |
+
arch[256] = {'in_channels':[input_nc]+[ch*item for item in [1,2,4,8,8]],
|
| 348 |
+
'out_channels':[item*ch for item in [1,2,4,8,8,16]],
|
| 349 |
+
'resolution': [128,64,32,16,8,4]}
|
| 350 |
+
return arch
|
| 351 |
+
|
| 352 |
+
class ContentEncoder(ModelMixin, ConfigMixin):
|
| 353 |
+
|
| 354 |
+
@register_to_config
|
| 355 |
+
def __init__(self, G_ch=64, G_wide=True, resolution=128,
|
| 356 |
+
G_kernel_size=3, G_attn='64_32_16_8', n_classes=1000,
|
| 357 |
+
num_G_SVs=1, num_G_SV_itrs=1, G_activation=nn.ReLU(inplace=False),
|
| 358 |
+
SN_eps=1e-12, output_dim=1, G_fp16=False,
|
| 359 |
+
G_init='N02', G_param='SN', nf_mlp = 512, nEmbedding = 256, input_nc = 3,output_nc = 3):
|
| 360 |
+
super(ContentEncoder, self).__init__()
|
| 361 |
+
|
| 362 |
+
self.ch = G_ch
|
| 363 |
+
self.G_wide = G_wide
|
| 364 |
+
self.resolution = resolution
|
| 365 |
+
self.kernel_size = G_kernel_size
|
| 366 |
+
self.attention = G_attn
|
| 367 |
+
self.n_classes = n_classes
|
| 368 |
+
self.activation = G_activation
|
| 369 |
+
self.init = G_init
|
| 370 |
+
self.G_param = G_param
|
| 371 |
+
self.SN_eps = SN_eps
|
| 372 |
+
self.fp16 = G_fp16
|
| 373 |
+
|
| 374 |
+
if self.resolution == 96:
|
| 375 |
+
self.save_featrues = [0,1,2,3,4]
|
| 376 |
+
elif self.resolution == 80:
|
| 377 |
+
self.save_featrues = [0,1,2,3,4]
|
| 378 |
+
elif self.resolution == 128:
|
| 379 |
+
self.save_featrues = [0,1,2,3,4]
|
| 380 |
+
elif self.resolution == 256:
|
| 381 |
+
self.save_featrues = [0,1,2,3,4,5]
|
| 382 |
+
|
| 383 |
+
self.out_channel_nultipiler = 1
|
| 384 |
+
self.arch = content_encoder_arch(self.ch, self.out_channel_nultipiler,input_nc)[resolution]
|
| 385 |
+
|
| 386 |
+
if self.G_param == 'SN':
|
| 387 |
+
self.which_conv = functools.partial(SNConv2d,
|
| 388 |
+
kernel_size=3, padding=1,
|
| 389 |
+
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
|
| 390 |
+
eps=self.SN_eps)
|
| 391 |
+
self.which_linear = functools.partial(SNLinear,
|
| 392 |
+
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
|
| 393 |
+
eps=self.SN_eps)
|
| 394 |
+
self.blocks = []
|
| 395 |
+
for index in range(len(self.arch['out_channels'])):
|
| 396 |
+
|
| 397 |
+
self.blocks += [[DBlock(in_channels=self.arch['in_channels'][index],
|
| 398 |
+
out_channels=self.arch['out_channels'][index],
|
| 399 |
+
which_conv=self.which_conv,
|
| 400 |
+
wide=self.G_wide,
|
| 401 |
+
activation=self.activation,
|
| 402 |
+
preactivation=(index > 0),
|
| 403 |
+
downsample=nn.AvgPool2d(2))]]
|
| 404 |
+
|
| 405 |
+
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
|
| 406 |
+
self.init_weights()
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
def init_weights(self):
|
| 410 |
+
self.param_count = 0
|
| 411 |
+
for module in self.modules():
|
| 412 |
+
if (isinstance(module, nn.Conv2d)
|
| 413 |
+
or isinstance(module, nn.Linear)
|
| 414 |
+
or isinstance(module, nn.Embedding)):
|
| 415 |
+
if self.init == 'ortho':
|
| 416 |
+
init.orthogonal_(module.weight)
|
| 417 |
+
elif self.init == 'N02':
|
| 418 |
+
init.normal_(module.weight, 0, 0.02)
|
| 419 |
+
elif self.init in ['glorot', 'xavier']:
|
| 420 |
+
init.xavier_uniform_(module.weight)
|
| 421 |
+
else:
|
| 422 |
+
print('Init style not recognized...')
|
| 423 |
+
self.param_count += sum([p.data.nelement() for p in module.parameters()])
|
| 424 |
+
print('Param count for D''s initialized parameters: %d' % self.param_count)
|
| 425 |
+
|
| 426 |
+
def forward(self,x):
|
| 427 |
+
h = x
|
| 428 |
+
residual_features = []
|
| 429 |
+
residual_features.append(h)
|
| 430 |
+
for index, blocklist in enumerate(self.blocks):
|
| 431 |
+
for block in blocklist:
|
| 432 |
+
h = block(h)
|
| 433 |
+
if index in self.save_featrues[:-1]:
|
| 434 |
+
residual_features.append(h)
|
| 435 |
+
return h,residual_features
|
src/modules/embeddings.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def get_timestep_embedding(
|
| 8 |
+
timesteps: torch.Tensor,
|
| 9 |
+
embedding_dim: int,
|
| 10 |
+
flip_sin_to_cos: bool = False,
|
| 11 |
+
downscale_freq_shift: float = 1,
|
| 12 |
+
scale: float = 1,
|
| 13 |
+
max_period: int = 10000,
|
| 14 |
+
):
|
| 15 |
+
"""
|
| 16 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
| 17 |
+
|
| 18 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
| 19 |
+
These may be fractional.
|
| 20 |
+
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
|
| 21 |
+
embeddings. :return: an [N x dim] Tensor of positional embeddings.
|
| 22 |
+
"""
|
| 23 |
+
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
| 24 |
+
|
| 25 |
+
half_dim = embedding_dim // 2
|
| 26 |
+
exponent = -math.log(max_period) * torch.arange(
|
| 27 |
+
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
|
| 28 |
+
)
|
| 29 |
+
exponent = exponent / (half_dim - downscale_freq_shift)
|
| 30 |
+
|
| 31 |
+
emb = torch.exp(exponent)
|
| 32 |
+
emb = timesteps[:, None].float() * emb[None, :]
|
| 33 |
+
|
| 34 |
+
# scale embeddings
|
| 35 |
+
emb = scale * emb
|
| 36 |
+
|
| 37 |
+
# concat sine and cosine embeddings
|
| 38 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
| 39 |
+
|
| 40 |
+
# flip sine and cosine embeddings
|
| 41 |
+
if flip_sin_to_cos:
|
| 42 |
+
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
| 43 |
+
|
| 44 |
+
# zero pad
|
| 45 |
+
if embedding_dim % 2 == 1:
|
| 46 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
| 47 |
+
return emb
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class TimestepEmbedding(nn.Module):
|
| 51 |
+
def __init__(self, channel: int, time_embed_dim: int, act_fn: str = "silu"):
|
| 52 |
+
super().__init__()
|
| 53 |
+
|
| 54 |
+
self.linear_1 = nn.Linear(channel, time_embed_dim)
|
| 55 |
+
self.act = None
|
| 56 |
+
if act_fn == "silu":
|
| 57 |
+
self.act = nn.SiLU()
|
| 58 |
+
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim)
|
| 59 |
+
|
| 60 |
+
def forward(self, sample):
|
| 61 |
+
sample = self.linear_1(sample)
|
| 62 |
+
|
| 63 |
+
if self.act is not None:
|
| 64 |
+
sample = self.act(sample)
|
| 65 |
+
|
| 66 |
+
sample = self.linear_2(sample)
|
| 67 |
+
return sample
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class Timesteps(nn.Module):
|
| 71 |
+
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
|
| 72 |
+
super().__init__()
|
| 73 |
+
self.num_channels = num_channels
|
| 74 |
+
self.flip_sin_to_cos = flip_sin_to_cos
|
| 75 |
+
self.downscale_freq_shift = downscale_freq_shift
|
| 76 |
+
|
| 77 |
+
def forward(self, timesteps):
|
| 78 |
+
t_emb = get_timestep_embedding(
|
| 79 |
+
timesteps,
|
| 80 |
+
self.num_channels,
|
| 81 |
+
flip_sin_to_cos=self.flip_sin_to_cos,
|
| 82 |
+
downscale_freq_shift=self.downscale_freq_shift,
|
| 83 |
+
)
|
| 84 |
+
return t_emb
|
src/modules/resnet.py
ADDED
|
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)):
|
| 9 |
+
up_x = up_y = up
|
| 10 |
+
down_x = down_y = down
|
| 11 |
+
pad_x0 = pad_y0 = pad[0]
|
| 12 |
+
pad_x1 = pad_y1 = pad[1]
|
| 13 |
+
|
| 14 |
+
_, channel, in_h, in_w = tensor.shape
|
| 15 |
+
tensor = tensor.reshape(-1, in_h, in_w, 1)
|
| 16 |
+
|
| 17 |
+
_, in_h, in_w, minor = tensor.shape
|
| 18 |
+
kernel_h, kernel_w = kernel.shape
|
| 19 |
+
|
| 20 |
+
out = tensor.view(-1, in_h, 1, in_w, 1, minor)
|
| 21 |
+
|
| 22 |
+
# Temporary workaround for mps specific issue: https://github.com/pytorch/pytorch/issues/84535
|
| 23 |
+
if tensor.device.type == "mps":
|
| 24 |
+
out = out.to("cpu")
|
| 25 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
| 26 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
| 27 |
+
|
| 28 |
+
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
|
| 29 |
+
out = out.to(tensor.device) # Move back to mps if necessary
|
| 30 |
+
out = out[
|
| 31 |
+
:,
|
| 32 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
| 33 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
| 34 |
+
:,
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
out = out.permute(0, 3, 1, 2)
|
| 38 |
+
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
| 39 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
| 40 |
+
out = F.conv2d(out, w)
|
| 41 |
+
out = out.reshape(
|
| 42 |
+
-1,
|
| 43 |
+
minor,
|
| 44 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
| 45 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
| 46 |
+
)
|
| 47 |
+
out = out.permute(0, 2, 3, 1)
|
| 48 |
+
out = out[:, ::down_y, ::down_x, :]
|
| 49 |
+
|
| 50 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
| 51 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
| 52 |
+
|
| 53 |
+
return out.view(-1, channel, out_h, out_w)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def upsample_2d(hidden_states, kernel=None, factor=2, gain=1):
|
| 57 |
+
r"""Upsample2D a batch of 2D images with the given filter.
|
| 58 |
+
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
|
| 59 |
+
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
|
| 60 |
+
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is
|
| 61 |
+
a: multiple of the upsampling factor.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
| 65 |
+
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
|
| 66 |
+
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
|
| 67 |
+
factor: Integer upsampling factor (default: 2).
|
| 68 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
output: Tensor of the shape `[N, C, H * factor, W * factor]`
|
| 72 |
+
"""
|
| 73 |
+
assert isinstance(factor, int) and factor >= 1
|
| 74 |
+
if kernel is None:
|
| 75 |
+
kernel = [1] * factor
|
| 76 |
+
|
| 77 |
+
kernel = torch.tensor(kernel, dtype=torch.float32)
|
| 78 |
+
if kernel.ndim == 1:
|
| 79 |
+
kernel = torch.outer(kernel, kernel)
|
| 80 |
+
kernel /= torch.sum(kernel)
|
| 81 |
+
|
| 82 |
+
kernel = kernel * (gain * (factor**2))
|
| 83 |
+
pad_value = kernel.shape[0] - factor
|
| 84 |
+
output = upfirdn2d_native(
|
| 85 |
+
hidden_states,
|
| 86 |
+
kernel.to(device=hidden_states.device),
|
| 87 |
+
up=factor,
|
| 88 |
+
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
|
| 89 |
+
)
|
| 90 |
+
return output
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def downsample_2d(hidden_states, kernel=None, factor=2, gain=1):
|
| 94 |
+
r"""Downsample2D a batch of 2D images with the given filter.
|
| 95 |
+
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
|
| 96 |
+
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
|
| 97 |
+
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
|
| 98 |
+
shape is a multiple of the downsampling factor.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
| 102 |
+
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
|
| 103 |
+
(separable). The default is `[1] * factor`, which corresponds to average pooling.
|
| 104 |
+
factor: Integer downsampling factor (default: 2).
|
| 105 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
| 106 |
+
|
| 107 |
+
Returns:
|
| 108 |
+
output: Tensor of the shape `[N, C, H // factor, W // factor]`
|
| 109 |
+
"""
|
| 110 |
+
|
| 111 |
+
assert isinstance(factor, int) and factor >= 1
|
| 112 |
+
if kernel is None:
|
| 113 |
+
kernel = [1] * factor
|
| 114 |
+
|
| 115 |
+
kernel = torch.tensor(kernel, dtype=torch.float32)
|
| 116 |
+
if kernel.ndim == 1:
|
| 117 |
+
kernel = torch.outer(kernel, kernel)
|
| 118 |
+
kernel /= torch.sum(kernel)
|
| 119 |
+
|
| 120 |
+
kernel = kernel * gain
|
| 121 |
+
pad_value = kernel.shape[0] - factor
|
| 122 |
+
output = upfirdn2d_native(
|
| 123 |
+
hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2)
|
| 124 |
+
)
|
| 125 |
+
return output
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class Mish(torch.nn.Module):
|
| 129 |
+
def forward(self, hidden_states):
|
| 130 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class Downsample2D(nn.Module):
|
| 134 |
+
"""
|
| 135 |
+
A downsampling layer with an optional convolution.
|
| 136 |
+
|
| 137 |
+
Parameters:
|
| 138 |
+
channels: channels in the inputs and outputs.
|
| 139 |
+
use_conv: a bool determining if a convolution is applied.
|
| 140 |
+
dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions.
|
| 141 |
+
"""
|
| 142 |
+
|
| 143 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
| 144 |
+
super().__init__()
|
| 145 |
+
self.channels = channels
|
| 146 |
+
self.out_channels = out_channels or channels
|
| 147 |
+
self.use_conv = use_conv
|
| 148 |
+
self.padding = padding
|
| 149 |
+
stride = 2
|
| 150 |
+
self.name = name
|
| 151 |
+
|
| 152 |
+
if use_conv:
|
| 153 |
+
conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
| 154 |
+
else:
|
| 155 |
+
assert self.channels == self.out_channels
|
| 156 |
+
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
|
| 157 |
+
|
| 158 |
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
| 159 |
+
if name == "conv":
|
| 160 |
+
self.Conv2d_0 = conv
|
| 161 |
+
self.conv = conv
|
| 162 |
+
elif name == "Conv2d_0":
|
| 163 |
+
self.conv = conv
|
| 164 |
+
else:
|
| 165 |
+
self.conv = conv
|
| 166 |
+
|
| 167 |
+
def forward(self, hidden_states):
|
| 168 |
+
assert hidden_states.shape[1] == self.channels
|
| 169 |
+
if self.use_conv and self.padding == 0:
|
| 170 |
+
pad = (0, 1, 0, 1)
|
| 171 |
+
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
|
| 172 |
+
|
| 173 |
+
assert hidden_states.shape[1] == self.channels
|
| 174 |
+
hidden_states = self.conv(hidden_states)
|
| 175 |
+
|
| 176 |
+
return hidden_states
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class ResnetBlock2D(nn.Module):
|
| 180 |
+
def __init__(
|
| 181 |
+
self,
|
| 182 |
+
*,
|
| 183 |
+
in_channels,
|
| 184 |
+
out_channels=None,
|
| 185 |
+
conv_shortcut=False,
|
| 186 |
+
dropout=0.0,
|
| 187 |
+
temb_channels=512,
|
| 188 |
+
groups=32,
|
| 189 |
+
groups_out=None,
|
| 190 |
+
pre_norm=True,
|
| 191 |
+
eps=1e-6,
|
| 192 |
+
non_linearity="swish",
|
| 193 |
+
time_embedding_norm="default",
|
| 194 |
+
kernel=None,
|
| 195 |
+
output_scale_factor=1.0,
|
| 196 |
+
use_in_shortcut=None,
|
| 197 |
+
up=False,
|
| 198 |
+
down=False,
|
| 199 |
+
):
|
| 200 |
+
super().__init__()
|
| 201 |
+
self.pre_norm = pre_norm
|
| 202 |
+
self.pre_norm = True
|
| 203 |
+
self.in_channels = in_channels
|
| 204 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 205 |
+
self.out_channels = out_channels
|
| 206 |
+
self.use_conv_shortcut = conv_shortcut
|
| 207 |
+
self.time_embedding_norm = time_embedding_norm
|
| 208 |
+
self.up = up
|
| 209 |
+
self.down = down
|
| 210 |
+
self.output_scale_factor = output_scale_factor
|
| 211 |
+
|
| 212 |
+
if groups_out is None:
|
| 213 |
+
groups_out = groups
|
| 214 |
+
|
| 215 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
| 216 |
+
|
| 217 |
+
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 218 |
+
|
| 219 |
+
if temb_channels is not None:
|
| 220 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
|
| 221 |
+
else:
|
| 222 |
+
self.time_emb_proj = None
|
| 223 |
+
|
| 224 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
| 225 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 226 |
+
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 227 |
+
|
| 228 |
+
if non_linearity == "swish":
|
| 229 |
+
self.nonlinearity = lambda x: F.silu(x)
|
| 230 |
+
elif non_linearity == "mish":
|
| 231 |
+
self.nonlinearity = Mish()
|
| 232 |
+
elif non_linearity == "silu":
|
| 233 |
+
self.nonlinearity = nn.SiLU()
|
| 234 |
+
|
| 235 |
+
self.upsample = self.downsample = None
|
| 236 |
+
if self.up:
|
| 237 |
+
if kernel == "fir":
|
| 238 |
+
fir_kernel = (1, 3, 3, 1)
|
| 239 |
+
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
|
| 240 |
+
elif kernel == "sde_vp":
|
| 241 |
+
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
|
| 242 |
+
else:
|
| 243 |
+
self.upsample = Upsample2D(in_channels, use_conv=False)
|
| 244 |
+
elif self.down:
|
| 245 |
+
if kernel == "fir":
|
| 246 |
+
fir_kernel = (1, 3, 3, 1)
|
| 247 |
+
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
|
| 248 |
+
elif kernel == "sde_vp":
|
| 249 |
+
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
|
| 250 |
+
else:
|
| 251 |
+
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
|
| 252 |
+
|
| 253 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
| 254 |
+
|
| 255 |
+
self.conv_shortcut = None
|
| 256 |
+
if self.use_in_shortcut:
|
| 257 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 258 |
+
|
| 259 |
+
def forward(self, input_tensor, temb):
|
| 260 |
+
hidden_states = input_tensor
|
| 261 |
+
|
| 262 |
+
hidden_states = self.norm1(hidden_states) # hidden_states: torch.Size([1, 128, 64, 64])
|
| 263 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 264 |
+
|
| 265 |
+
if self.upsample is not None: # when crossattn, both upsample and downsample is None
|
| 266 |
+
input_tensor = self.upsample(input_tensor)
|
| 267 |
+
hidden_states = self.upsample(hidden_states)
|
| 268 |
+
elif self.downsample is not None:
|
| 269 |
+
input_tensor = self.downsample(input_tensor)
|
| 270 |
+
hidden_states = self.downsample(hidden_states)
|
| 271 |
+
|
| 272 |
+
hidden_states = self.conv1(hidden_states)
|
| 273 |
+
|
| 274 |
+
if temb is not None:
|
| 275 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
|
| 276 |
+
hidden_states = hidden_states + temb # just add together
|
| 277 |
+
|
| 278 |
+
hidden_states = self.norm2(hidden_states)
|
| 279 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 280 |
+
|
| 281 |
+
hidden_states = self.dropout(hidden_states)
|
| 282 |
+
hidden_states = self.conv2(hidden_states)
|
| 283 |
+
|
| 284 |
+
if self.conv_shortcut is not None:
|
| 285 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
| 286 |
+
|
| 287 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
| 288 |
+
|
| 289 |
+
return output_tensor
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
class Upsample2D(nn.Module):
|
| 293 |
+
"""
|
| 294 |
+
An upsampling layer with an optional convolution.
|
| 295 |
+
|
| 296 |
+
Parameters:
|
| 297 |
+
channels: channels in the inputs and outputs.
|
| 298 |
+
use_conv: a bool determining if a convolution is applied.
|
| 299 |
+
dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions.
|
| 300 |
+
"""
|
| 301 |
+
|
| 302 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
| 303 |
+
super().__init__()
|
| 304 |
+
self.channels = channels
|
| 305 |
+
self.out_channels = out_channels or channels
|
| 306 |
+
self.use_conv = use_conv
|
| 307 |
+
self.use_conv_transpose = use_conv_transpose
|
| 308 |
+
self.name = name
|
| 309 |
+
|
| 310 |
+
conv = None
|
| 311 |
+
if use_conv_transpose:
|
| 312 |
+
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
|
| 313 |
+
elif use_conv:
|
| 314 |
+
conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
|
| 315 |
+
|
| 316 |
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
| 317 |
+
if name == "conv":
|
| 318 |
+
self.conv = conv
|
| 319 |
+
else:
|
| 320 |
+
self.Conv2d_0 = conv
|
| 321 |
+
|
| 322 |
+
def forward(self, hidden_states, output_size=None):
|
| 323 |
+
assert hidden_states.shape[1] == self.channels
|
| 324 |
+
|
| 325 |
+
if self.use_conv_transpose:
|
| 326 |
+
return self.conv(hidden_states)
|
| 327 |
+
|
| 328 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
| 329 |
+
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
|
| 330 |
+
# https://github.com/pytorch/pytorch/issues/86679
|
| 331 |
+
dtype = hidden_states.dtype
|
| 332 |
+
if dtype == torch.bfloat16:
|
| 333 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 334 |
+
|
| 335 |
+
# if `output_size` is passed we force the interpolation output
|
| 336 |
+
# size and do not make use of `scale_factor=2`
|
| 337 |
+
if output_size is None:
|
| 338 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
|
| 339 |
+
else:
|
| 340 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
| 341 |
+
|
| 342 |
+
# If the input is bfloat16, we cast back to bfloat16
|
| 343 |
+
if dtype == torch.bfloat16:
|
| 344 |
+
hidden_states = hidden_states.to(dtype)
|
| 345 |
+
|
| 346 |
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
| 347 |
+
if self.use_conv:
|
| 348 |
+
if self.name == "conv":
|
| 349 |
+
hidden_states = self.conv(hidden_states)
|
| 350 |
+
else:
|
| 351 |
+
hidden_states = self.Conv2d_0(hidden_states)
|
| 352 |
+
|
| 353 |
+
return hidden_states
|
src/modules/style_encoder.py
ADDED
|
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from torch.nn import init
|
| 7 |
+
|
| 8 |
+
from diffusers import ModelMixin
|
| 9 |
+
from diffusers.configuration_utils import (ConfigMixin,
|
| 10 |
+
register_to_config)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def proj(x, y):
|
| 14 |
+
return torch.mm(y, x.t()) * y / torch.mm(y, y.t())
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def gram_schmidt(x, ys):
|
| 18 |
+
for y in ys:
|
| 19 |
+
x = x - proj(x, y)
|
| 20 |
+
return x
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def power_iteration(W, u_, update=True, eps=1e-12):
|
| 24 |
+
us, vs, svs = [], [], []
|
| 25 |
+
for i, u in enumerate(u_):
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
v = torch.matmul(u, W)
|
| 28 |
+
v = F.normalize(gram_schmidt(v, vs), eps=eps)
|
| 29 |
+
vs += [v]
|
| 30 |
+
u = torch.matmul(v, W.t())
|
| 31 |
+
u = F.normalize(gram_schmidt(u, us), eps=eps)
|
| 32 |
+
us += [u]
|
| 33 |
+
if update:
|
| 34 |
+
u_[i][:] = u
|
| 35 |
+
svs += [torch.squeeze(torch.matmul(torch.matmul(v, W.t()), u.t()))]
|
| 36 |
+
return svs, us, vs
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class LinearBlock(nn.Module):
|
| 40 |
+
def __init__(
|
| 41 |
+
self,
|
| 42 |
+
in_dim,
|
| 43 |
+
out_dim,
|
| 44 |
+
norm='none',
|
| 45 |
+
act='relu',
|
| 46 |
+
use_sn=False
|
| 47 |
+
):
|
| 48 |
+
super(LinearBlock, self).__init__()
|
| 49 |
+
use_bias = True
|
| 50 |
+
self.fc = nn.Linear(in_dim, out_dim, bias=use_bias)
|
| 51 |
+
if use_sn:
|
| 52 |
+
self.fc = nn.utils.spectral_norm(self.fc)
|
| 53 |
+
|
| 54 |
+
# initialize normalization
|
| 55 |
+
norm_dim = out_dim
|
| 56 |
+
if norm == 'bn':
|
| 57 |
+
self.norm = nn.BatchNorm1d(norm_dim)
|
| 58 |
+
elif norm == 'in':
|
| 59 |
+
self.norm = nn.InstanceNorm1d(norm_dim)
|
| 60 |
+
elif norm == 'none':
|
| 61 |
+
self.norm = None
|
| 62 |
+
else:
|
| 63 |
+
assert 0, "Unsupported normalization: {}".format(norm)
|
| 64 |
+
|
| 65 |
+
# initialize activation
|
| 66 |
+
if act == 'relu':
|
| 67 |
+
self.activation = nn.ReLU(inplace=True)
|
| 68 |
+
elif act == 'lrelu':
|
| 69 |
+
self.activation = nn.LeakyReLU(0.2, inplace=True)
|
| 70 |
+
elif act == 'tanh':
|
| 71 |
+
self.activation = nn.Tanh()
|
| 72 |
+
elif act == 'none':
|
| 73 |
+
self.activation = None
|
| 74 |
+
else:
|
| 75 |
+
assert 0, "Unsupported activation: {}".format(act)
|
| 76 |
+
|
| 77 |
+
def forward(self, x):
|
| 78 |
+
out = self.fc(x)
|
| 79 |
+
if self.norm:
|
| 80 |
+
out = self.norm(out)
|
| 81 |
+
if self.activation:
|
| 82 |
+
out = self.activation(out)
|
| 83 |
+
return out
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class MLP(nn.Module):
|
| 87 |
+
def __init__(
|
| 88 |
+
self,
|
| 89 |
+
nf_in,
|
| 90 |
+
nf_out,
|
| 91 |
+
nf_mlp,
|
| 92 |
+
num_blocks,
|
| 93 |
+
norm,
|
| 94 |
+
act,
|
| 95 |
+
use_sn =False
|
| 96 |
+
):
|
| 97 |
+
super(MLP,self).__init__()
|
| 98 |
+
self.model = nn.ModuleList()
|
| 99 |
+
nf = nf_mlp
|
| 100 |
+
self.model.append(LinearBlock(nf_in, nf, norm = norm, act = act, use_sn = use_sn))
|
| 101 |
+
for _ in range((num_blocks - 2)):
|
| 102 |
+
self.model.append(LinearBlock(nf, nf, norm=norm, act=act, use_sn=use_sn))
|
| 103 |
+
self.model.append(LinearBlock(nf, nf_out, norm='none', act ='none', use_sn = use_sn))
|
| 104 |
+
self.model = nn.Sequential(*self.model)
|
| 105 |
+
|
| 106 |
+
def forward(self, x):
|
| 107 |
+
return self.model(x.view(x.size(0), -1))
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class SN(object):
|
| 111 |
+
def __init__(self, num_svs, num_itrs, num_outputs, transpose=False, eps=1e-12):
|
| 112 |
+
self.num_itrs = num_itrs
|
| 113 |
+
self.num_svs = num_svs
|
| 114 |
+
self.transpose = transpose
|
| 115 |
+
self.eps = eps
|
| 116 |
+
for i in range(self.num_svs):
|
| 117 |
+
self.register_buffer('u%d' % i, torch.randn(1, num_outputs))
|
| 118 |
+
self.register_buffer('sv%d' % i, torch.ones(1))
|
| 119 |
+
|
| 120 |
+
@property
|
| 121 |
+
def u(self):
|
| 122 |
+
return [getattr(self, 'u%d' % i) for i in range(self.num_svs)]
|
| 123 |
+
|
| 124 |
+
@property
|
| 125 |
+
def sv(self):
|
| 126 |
+
return [getattr(self, 'sv%d' % i) for i in range(self.num_svs)]
|
| 127 |
+
|
| 128 |
+
def W_(self):
|
| 129 |
+
W_mat = self.weight.view(self.weight.size(0), -1)
|
| 130 |
+
if self.transpose:
|
| 131 |
+
W_mat = W_mat.t()
|
| 132 |
+
for _ in range(self.num_itrs):
|
| 133 |
+
svs, us, vs = power_iteration(W_mat, self.u, update=self.training, eps=self.eps)
|
| 134 |
+
if self.training:
|
| 135 |
+
with torch.no_grad():
|
| 136 |
+
for i, sv in enumerate(svs):
|
| 137 |
+
self.sv[i][:] = sv
|
| 138 |
+
return self.weight / svs[0]
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class SNConv2d(nn.Conv2d, SN):
|
| 142 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
| 143 |
+
padding=0, dilation=1, groups=1, bias=True,
|
| 144 |
+
num_svs=1, num_itrs=1, eps=1e-12):
|
| 145 |
+
nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, stride,
|
| 146 |
+
padding, dilation, groups, bias)
|
| 147 |
+
SN.__init__(self, num_svs, num_itrs, out_channels, eps=eps)
|
| 148 |
+
|
| 149 |
+
def forward(self, x):
|
| 150 |
+
return F.conv2d(x, self.W_(), self.bias, self.stride,
|
| 151 |
+
self.padding, self.dilation, self.groups)
|
| 152 |
+
|
| 153 |
+
def forward_wo_sn(self, x):
|
| 154 |
+
return F.conv2d(x, self.weight, self.bias, self.stride,
|
| 155 |
+
self.padding, self.dilation, self.groups)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class SNLinear(nn.Linear, SN):
|
| 159 |
+
def __init__(self, in_features, out_features, bias=True,
|
| 160 |
+
num_svs=1, num_itrs=1, eps=1e-12):
|
| 161 |
+
nn.Linear.__init__(self, in_features, out_features, bias)
|
| 162 |
+
SN.__init__(self, num_svs, num_itrs, out_features, eps=eps)
|
| 163 |
+
|
| 164 |
+
def forward(self, x):
|
| 165 |
+
return F.linear(x, self.W_(), self.bias)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class DBlock(nn.Module):
|
| 169 |
+
def __init__(self, in_channels, out_channels, which_conv=SNConv2d, wide=True,
|
| 170 |
+
preactivation=False, activation=None, downsample=None,):
|
| 171 |
+
super(DBlock, self).__init__()
|
| 172 |
+
|
| 173 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
| 174 |
+
|
| 175 |
+
self.hidden_channels = self.out_channels if wide else self.in_channels
|
| 176 |
+
self.which_conv = which_conv
|
| 177 |
+
self.preactivation = preactivation
|
| 178 |
+
self.activation = activation
|
| 179 |
+
self.downsample = downsample
|
| 180 |
+
|
| 181 |
+
# Conv layers
|
| 182 |
+
self.conv1 = self.which_conv(self.in_channels, self.hidden_channels)
|
| 183 |
+
self.conv2 = self.which_conv(self.hidden_channels, self.out_channels)
|
| 184 |
+
self.learnable_sc = True if (in_channels != out_channels) or downsample else False
|
| 185 |
+
if self.learnable_sc:
|
| 186 |
+
self.conv_sc = self.which_conv(in_channels, out_channels,
|
| 187 |
+
kernel_size=1, padding=0)
|
| 188 |
+
def shortcut(self, x):
|
| 189 |
+
if self.preactivation:
|
| 190 |
+
if self.learnable_sc:
|
| 191 |
+
x = self.conv_sc(x)
|
| 192 |
+
if self.downsample:
|
| 193 |
+
x = self.downsample(x)
|
| 194 |
+
else:
|
| 195 |
+
if self.downsample:
|
| 196 |
+
x = self.downsample(x)
|
| 197 |
+
if self.learnable_sc:
|
| 198 |
+
x = self.conv_sc(x)
|
| 199 |
+
return x
|
| 200 |
+
|
| 201 |
+
def forward(self, x):
|
| 202 |
+
|
| 203 |
+
if self.preactivation:
|
| 204 |
+
h = F.relu(x)
|
| 205 |
+
else:
|
| 206 |
+
h = x
|
| 207 |
+
h = self.conv1(h)
|
| 208 |
+
h = self.conv2(self.activation(h))
|
| 209 |
+
if self.downsample:
|
| 210 |
+
h = self.downsample(h)
|
| 211 |
+
|
| 212 |
+
return h + self.shortcut(x)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
class GBlock(nn.Module):
|
| 216 |
+
def __init__(self, in_channels, out_channels,
|
| 217 |
+
which_conv=nn.Conv2d,which_bn= nn.BatchNorm2d, activation=None,
|
| 218 |
+
upsample=None):
|
| 219 |
+
super(GBlock, self).__init__()
|
| 220 |
+
|
| 221 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
| 222 |
+
self.which_conv,self.which_bn =which_conv, which_bn
|
| 223 |
+
self.activation = activation
|
| 224 |
+
self.upsample = upsample
|
| 225 |
+
# Conv layers
|
| 226 |
+
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
|
| 227 |
+
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
|
| 228 |
+
self.learnable_sc = in_channels != out_channels or upsample
|
| 229 |
+
if self.learnable_sc:
|
| 230 |
+
self.conv_sc = self.which_conv(in_channels, out_channels,
|
| 231 |
+
kernel_size=1, padding=0)
|
| 232 |
+
# Batchnorm layers
|
| 233 |
+
self.bn1 = self.which_bn(in_channels)
|
| 234 |
+
self.bn2 = self.which_bn(out_channels)
|
| 235 |
+
# upsample layers
|
| 236 |
+
self.upsample = upsample
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def forward(self, x):
|
| 240 |
+
h = self.activation(self.bn1(x))
|
| 241 |
+
if self.upsample:
|
| 242 |
+
h = self.upsample(h)
|
| 243 |
+
x = self.upsample(x)
|
| 244 |
+
h = self.conv1(h)
|
| 245 |
+
h = self.activation(self.bn2(h))
|
| 246 |
+
h = self.conv2(h)
|
| 247 |
+
if self.learnable_sc:
|
| 248 |
+
x = self.conv_sc(x)
|
| 249 |
+
return h + x
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
class GBlock2(nn.Module):
|
| 253 |
+
def __init__(self, in_channels, out_channels,
|
| 254 |
+
which_conv=nn.Conv2d, activation=None,
|
| 255 |
+
upsample=None, skip_connection = True):
|
| 256 |
+
super(GBlock2, self).__init__()
|
| 257 |
+
|
| 258 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
| 259 |
+
self.which_conv = which_conv
|
| 260 |
+
self.activation = activation
|
| 261 |
+
self.upsample = upsample
|
| 262 |
+
|
| 263 |
+
# Conv layers
|
| 264 |
+
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
|
| 265 |
+
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
|
| 266 |
+
self.learnable_sc = in_channels != out_channels or upsample
|
| 267 |
+
if self.learnable_sc:
|
| 268 |
+
self.conv_sc = self.which_conv(in_channels, out_channels,
|
| 269 |
+
kernel_size=1, padding=0)
|
| 270 |
+
# upsample layers
|
| 271 |
+
self.upsample = upsample
|
| 272 |
+
self.skip_connection = skip_connection
|
| 273 |
+
|
| 274 |
+
def forward(self, x):
|
| 275 |
+
h = self.activation(x)
|
| 276 |
+
if self.upsample:
|
| 277 |
+
h = self.upsample(h)
|
| 278 |
+
x = self.upsample(x)
|
| 279 |
+
h = self.conv1(h)
|
| 280 |
+
|
| 281 |
+
h = self.activation(h)
|
| 282 |
+
h = self.conv2(h)
|
| 283 |
+
|
| 284 |
+
if self.learnable_sc:
|
| 285 |
+
x = self.conv_sc(x)
|
| 286 |
+
if self.skip_connection:
|
| 287 |
+
out = h + x
|
| 288 |
+
else:
|
| 289 |
+
out = h
|
| 290 |
+
return out
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
def style_encoder_textedit_addskip_arch(ch =64,out_channel_multiplier = 1, input_nc = 3):
|
| 294 |
+
arch = {}
|
| 295 |
+
n=2
|
| 296 |
+
arch[96] = {'in_channels': [input_nc] + [ch*item for item in [1,2,4,8]],
|
| 297 |
+
'out_channels' : [item * ch for item in [1,2,4,8,16]],
|
| 298 |
+
'resolution': [48,24,12,6,3]}
|
| 299 |
+
|
| 300 |
+
arch[128] = {'in_channels': [input_nc] + [ch*item for item in [1,2,4,8]],
|
| 301 |
+
'out_channels' : [item * ch for item in [1,2,4,8,16]],
|
| 302 |
+
'resolution': [64,32,16,8,4]}
|
| 303 |
+
|
| 304 |
+
arch[256] = {'in_channels':[input_nc]+[ch*item for item in [1,2,4,8,8]],
|
| 305 |
+
'out_channels':[item*ch for item in [1,2,4,8,8,16]],
|
| 306 |
+
'resolution': [128,64,32,16,8,4]}
|
| 307 |
+
return arch
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
class StyleEncoder(ModelMixin, ConfigMixin):
|
| 311 |
+
"""
|
| 312 |
+
This class is to encode the style image to image embedding.
|
| 313 |
+
Downsample scale is 32.
|
| 314 |
+
For example:
|
| 315 |
+
Input: Shape[Batch, 3, 128, 128]
|
| 316 |
+
Output: Shape[Batch, 255, 4, 4]
|
| 317 |
+
"""
|
| 318 |
+
@register_to_config
|
| 319 |
+
def __init__(
|
| 320 |
+
self,
|
| 321 |
+
G_ch=64,
|
| 322 |
+
G_wide=True,
|
| 323 |
+
resolution=128,
|
| 324 |
+
G_kernel_size=3,
|
| 325 |
+
G_attn='64_32_16_8',
|
| 326 |
+
n_classes=1000,
|
| 327 |
+
num_G_SVs=1,
|
| 328 |
+
num_G_SV_itrs=1,
|
| 329 |
+
G_activation=nn.ReLU(inplace=False),
|
| 330 |
+
SN_eps=1e-12,
|
| 331 |
+
output_dim=1,
|
| 332 |
+
G_fp16=False,
|
| 333 |
+
G_init='N02',
|
| 334 |
+
G_param='SN',
|
| 335 |
+
nf_mlp = 512,
|
| 336 |
+
nEmbedding = 256,
|
| 337 |
+
input_nc = 3,
|
| 338 |
+
output_nc = 3
|
| 339 |
+
):
|
| 340 |
+
super(StyleEncoder, self).__init__()
|
| 341 |
+
|
| 342 |
+
self.ch = G_ch
|
| 343 |
+
self.G_wide = G_wide
|
| 344 |
+
self.resolution = resolution
|
| 345 |
+
self.kernel_size = G_kernel_size
|
| 346 |
+
self.attention = G_attn
|
| 347 |
+
self.n_classes = n_classes
|
| 348 |
+
self.activation = G_activation
|
| 349 |
+
self.init = G_init
|
| 350 |
+
self.G_param = G_param
|
| 351 |
+
self.SN_eps = SN_eps
|
| 352 |
+
self.fp16 = G_fp16
|
| 353 |
+
|
| 354 |
+
if self.resolution == 96:
|
| 355 |
+
self.save_featrues = [0,1,2,3,4]
|
| 356 |
+
if self.resolution == 128:
|
| 357 |
+
self.save_featrues = [0,1,2,3,4]
|
| 358 |
+
elif self.resolution == 256:
|
| 359 |
+
self.save_featrues = [0,1,2,3,4,5]
|
| 360 |
+
|
| 361 |
+
self.out_channel_nultipiler = 1
|
| 362 |
+
self.arch = style_encoder_textedit_addskip_arch(
|
| 363 |
+
self.ch,
|
| 364 |
+
self.out_channel_nultipiler,
|
| 365 |
+
input_nc
|
| 366 |
+
)[resolution]
|
| 367 |
+
|
| 368 |
+
if self.G_param == 'SN':
|
| 369 |
+
self.which_conv = functools.partial(
|
| 370 |
+
SNConv2d,
|
| 371 |
+
kernel_size=3, padding=1,
|
| 372 |
+
num_svs=num_G_SVs,
|
| 373 |
+
num_itrs=num_G_SV_itrs,
|
| 374 |
+
eps=self.SN_eps
|
| 375 |
+
)
|
| 376 |
+
self.which_linear = functools.partial(
|
| 377 |
+
SNLinear,
|
| 378 |
+
num_svs=num_G_SVs,
|
| 379 |
+
num_itrs=num_G_SV_itrs,
|
| 380 |
+
eps=self.SN_eps
|
| 381 |
+
)
|
| 382 |
+
self.blocks = []
|
| 383 |
+
for index in range(len(self.arch['out_channels'])):
|
| 384 |
+
|
| 385 |
+
self.blocks += [[DBlock(
|
| 386 |
+
in_channels=self.arch['in_channels'][index],
|
| 387 |
+
out_channels=self.arch['out_channels'][index],
|
| 388 |
+
which_conv=self.which_conv,
|
| 389 |
+
wide=self.G_wide,
|
| 390 |
+
activation=self.activation,
|
| 391 |
+
preactivation=(index > 0),
|
| 392 |
+
downsample=nn.AvgPool2d(2)
|
| 393 |
+
)]]
|
| 394 |
+
|
| 395 |
+
self.blocks = nn.ModuleList([
|
| 396 |
+
nn.ModuleList(block) for block in self.blocks
|
| 397 |
+
])
|
| 398 |
+
last_layer = nn.Sequential(
|
| 399 |
+
nn.InstanceNorm2d(self.arch['out_channels'][-1]),
|
| 400 |
+
self.activation,
|
| 401 |
+
nn.Conv2d(
|
| 402 |
+
self.arch['out_channels'][-1],
|
| 403 |
+
self.arch['out_channels'][-1],
|
| 404 |
+
kernel_size=1,
|
| 405 |
+
stride=1
|
| 406 |
+
)
|
| 407 |
+
)
|
| 408 |
+
self.blocks.append(last_layer)
|
| 409 |
+
self.init_weights()
|
| 410 |
+
|
| 411 |
+
def init_weights(self):
|
| 412 |
+
self.param_count = 0
|
| 413 |
+
for module in self.modules():
|
| 414 |
+
if (isinstance(module, nn.Conv2d)
|
| 415 |
+
or isinstance(module, nn.Linear)
|
| 416 |
+
or isinstance(module, nn.Embedding)):
|
| 417 |
+
if self.init == 'ortho':
|
| 418 |
+
init.orthogonal_(module.weight)
|
| 419 |
+
elif self.init == 'N02':
|
| 420 |
+
init.normal_(module.weight, 0, 0.02)
|
| 421 |
+
elif self.init in ['glorot', 'xavier']:
|
| 422 |
+
init.xavier_uniform_(module.weight)
|
| 423 |
+
else:
|
| 424 |
+
print('Init style not recognized...')
|
| 425 |
+
self.param_count += sum([p.data.nelement() for p in module.parameters()])
|
| 426 |
+
print('Param count for D''s initialized parameters: %d' % self.param_count)
|
| 427 |
+
|
| 428 |
+
def forward(self,x):
|
| 429 |
+
h = x
|
| 430 |
+
residual_features = []
|
| 431 |
+
residual_features.append(h)
|
| 432 |
+
for index, blocklist in enumerate(self.blocks):
|
| 433 |
+
for block in blocklist:
|
| 434 |
+
h = block(h)
|
| 435 |
+
if index in self.save_featrues[:-1]:
|
| 436 |
+
residual_features.append(h)
|
| 437 |
+
h = self.blocks[-1](h)
|
| 438 |
+
style_emd = h
|
| 439 |
+
h = F.adaptive_avg_pool2d(h,(1,1))
|
| 440 |
+
h = h.view(h.size(0),-1)
|
| 441 |
+
|
| 442 |
+
return style_emd,h,residual_features
|
src/modules/unet.py
ADDED
|
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.utils.checkpoint
|
| 7 |
+
|
| 8 |
+
from diffusers import ModelMixin
|
| 9 |
+
from diffusers.configuration_utils import (ConfigMixin,
|
| 10 |
+
register_to_config)
|
| 11 |
+
from diffusers.utils import BaseOutput, logging
|
| 12 |
+
|
| 13 |
+
from .embeddings import TimestepEmbedding, Timesteps
|
| 14 |
+
from .unet_blocks import (DownBlock2D,
|
| 15 |
+
UNetMidMCABlock2D,
|
| 16 |
+
UpBlock2D,
|
| 17 |
+
get_down_block,
|
| 18 |
+
get_up_block)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@dataclass
|
| 25 |
+
class UNetOutput(BaseOutput):
|
| 26 |
+
sample: torch.FloatTensor
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class UNet(ModelMixin, ConfigMixin):
|
| 30 |
+
_supports_gradient_checkpointing = True
|
| 31 |
+
|
| 32 |
+
@register_to_config
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
sample_size: Optional[int] = None,
|
| 36 |
+
in_channels: int = 4,
|
| 37 |
+
out_channels: int = 4,
|
| 38 |
+
flip_sin_to_cos: bool = True,
|
| 39 |
+
freq_shift: int = 0,
|
| 40 |
+
down_block_types: Tuple[str] = None,
|
| 41 |
+
up_block_types: Tuple[str] = None,
|
| 42 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 43 |
+
layers_per_block: int = 1,
|
| 44 |
+
downsample_padding: int = 1,
|
| 45 |
+
mid_block_scale_factor: float = 1,
|
| 46 |
+
act_fn: str = "silu",
|
| 47 |
+
norm_num_groups: int = 32,
|
| 48 |
+
norm_eps: float = 1e-5,
|
| 49 |
+
cross_attention_dim: int = 1280,
|
| 50 |
+
attention_head_dim: int = 8,
|
| 51 |
+
channel_attn: bool = False,
|
| 52 |
+
content_encoder_downsample_size: int = 4,
|
| 53 |
+
content_start_channel: int = 16,
|
| 54 |
+
reduction: int = 32,
|
| 55 |
+
):
|
| 56 |
+
super().__init__()
|
| 57 |
+
|
| 58 |
+
self.content_encoder_downsample_size = content_encoder_downsample_size
|
| 59 |
+
|
| 60 |
+
self.sample_size = sample_size
|
| 61 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 62 |
+
|
| 63 |
+
# input
|
| 64 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
| 65 |
+
|
| 66 |
+
# time
|
| 67 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 68 |
+
timestep_input_dim = block_out_channels[0]
|
| 69 |
+
|
| 70 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 71 |
+
|
| 72 |
+
self.down_blocks = nn.ModuleList([])
|
| 73 |
+
self.mid_block = None
|
| 74 |
+
self.up_blocks = nn.ModuleList([])
|
| 75 |
+
|
| 76 |
+
# down
|
| 77 |
+
output_channel = block_out_channels[0]
|
| 78 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 79 |
+
input_channel = output_channel
|
| 80 |
+
output_channel = block_out_channels[i]
|
| 81 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 82 |
+
|
| 83 |
+
if i != 0:
|
| 84 |
+
content_channel = content_start_channel * (2 ** (i-1))
|
| 85 |
+
else:
|
| 86 |
+
content_channel = 0
|
| 87 |
+
|
| 88 |
+
print("Load the down block ", down_block_type)
|
| 89 |
+
down_block = get_down_block(
|
| 90 |
+
down_block_type,
|
| 91 |
+
num_layers=layers_per_block,
|
| 92 |
+
in_channels=input_channel,
|
| 93 |
+
out_channels=output_channel,
|
| 94 |
+
temb_channels=time_embed_dim,
|
| 95 |
+
add_downsample=not is_final_block,
|
| 96 |
+
resnet_eps=norm_eps,
|
| 97 |
+
resnet_act_fn=act_fn,
|
| 98 |
+
resnet_groups=norm_num_groups,
|
| 99 |
+
cross_attention_dim=cross_attention_dim,
|
| 100 |
+
attn_num_head_channels=attention_head_dim,
|
| 101 |
+
downsample_padding=downsample_padding,
|
| 102 |
+
content_channel=content_channel,
|
| 103 |
+
reduction=reduction,
|
| 104 |
+
channel_attn=channel_attn,
|
| 105 |
+
)
|
| 106 |
+
self.down_blocks.append(down_block)
|
| 107 |
+
|
| 108 |
+
# mid
|
| 109 |
+
self.mid_block = UNetMidMCABlock2D(
|
| 110 |
+
in_channels=block_out_channels[-1],
|
| 111 |
+
temb_channels=time_embed_dim,
|
| 112 |
+
channel_attn=channel_attn,
|
| 113 |
+
resnet_eps=norm_eps,
|
| 114 |
+
resnet_act_fn=act_fn,
|
| 115 |
+
output_scale_factor=mid_block_scale_factor,
|
| 116 |
+
resnet_time_scale_shift="default",
|
| 117 |
+
cross_attention_dim=cross_attention_dim,
|
| 118 |
+
attn_num_head_channels=attention_head_dim,
|
| 119 |
+
resnet_groups=norm_num_groups,
|
| 120 |
+
content_channel=content_start_channel*(2**(content_encoder_downsample_size - 1)),
|
| 121 |
+
reduction=reduction,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# count how many layers upsample the images
|
| 125 |
+
self.num_upsamplers = 0
|
| 126 |
+
|
| 127 |
+
# up
|
| 128 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 129 |
+
output_channel = reversed_block_out_channels[0]
|
| 130 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 131 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 132 |
+
|
| 133 |
+
prev_output_channel = output_channel
|
| 134 |
+
output_channel = reversed_block_out_channels[i]
|
| 135 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
| 136 |
+
|
| 137 |
+
# add upsample block for all BUT final layer
|
| 138 |
+
if not is_final_block:
|
| 139 |
+
add_upsample = True
|
| 140 |
+
self.num_upsamplers += 1
|
| 141 |
+
else:
|
| 142 |
+
add_upsample = False
|
| 143 |
+
|
| 144 |
+
content_channel = content_start_channel * (2 ** (content_encoder_downsample_size - i - 1))
|
| 145 |
+
|
| 146 |
+
print("Load the up block ", up_block_type)
|
| 147 |
+
up_block = get_up_block(
|
| 148 |
+
up_block_type,
|
| 149 |
+
num_layers=layers_per_block + 1, # larger 1 than the down block
|
| 150 |
+
in_channels=input_channel,
|
| 151 |
+
out_channels=output_channel,
|
| 152 |
+
prev_output_channel=prev_output_channel,
|
| 153 |
+
temb_channels=time_embed_dim,
|
| 154 |
+
add_upsample=add_upsample,
|
| 155 |
+
resnet_eps=norm_eps,
|
| 156 |
+
resnet_act_fn=act_fn,
|
| 157 |
+
resnet_groups=norm_num_groups,
|
| 158 |
+
cross_attention_dim=cross_attention_dim,
|
| 159 |
+
attn_num_head_channels=attention_head_dim,
|
| 160 |
+
upblock_index=i,
|
| 161 |
+
)
|
| 162 |
+
self.up_blocks.append(up_block)
|
| 163 |
+
prev_output_channel = output_channel
|
| 164 |
+
|
| 165 |
+
# out
|
| 166 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
| 167 |
+
self.conv_act = nn.SiLU()
|
| 168 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
| 169 |
+
|
| 170 |
+
def set_attention_slice(self, slice_size):
|
| 171 |
+
if slice_size is not None and self.config.attention_head_dim % slice_size != 0:
|
| 172 |
+
raise ValueError(
|
| 173 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
| 174 |
+
f"the number of heads used in cross_attention {self.config.attention_head_dim}"
|
| 175 |
+
)
|
| 176 |
+
if slice_size is not None and slice_size > self.config.attention_head_dim:
|
| 177 |
+
raise ValueError(
|
| 178 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
| 179 |
+
f"the number of heads used in cross_attention {self.config.attention_head_dim}"
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
for block in self.down_blocks:
|
| 183 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
| 184 |
+
block.set_attention_slice(slice_size)
|
| 185 |
+
|
| 186 |
+
self.mid_block.set_attention_slice(slice_size)
|
| 187 |
+
|
| 188 |
+
for block in self.up_blocks:
|
| 189 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
| 190 |
+
block.set_attention_slice(slice_size)
|
| 191 |
+
|
| 192 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 193 |
+
if isinstance(module, (DownBlock2D, UpBlock2D)):
|
| 194 |
+
module.gradient_checkpointing = value
|
| 195 |
+
|
| 196 |
+
def forward(
|
| 197 |
+
self,
|
| 198 |
+
sample: torch.FloatTensor,
|
| 199 |
+
timestep: Union[torch.Tensor, float, int],
|
| 200 |
+
encoder_hidden_states: torch.Tensor,
|
| 201 |
+
content_encoder_downsample_size: int = 4,
|
| 202 |
+
return_dict: bool = False,
|
| 203 |
+
) -> Union[UNetOutput, Tuple]:
|
| 204 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 205 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
| 206 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 207 |
+
# on the fly if necessary.
|
| 208 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 209 |
+
|
| 210 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 211 |
+
forward_upsample_size = False
|
| 212 |
+
upsample_size = None
|
| 213 |
+
|
| 214 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 215 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
| 216 |
+
forward_upsample_size = True
|
| 217 |
+
|
| 218 |
+
# 1. time
|
| 219 |
+
timesteps = timestep # only one time
|
| 220 |
+
if not torch.is_tensor(timesteps):
|
| 221 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 222 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
| 223 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
| 224 |
+
timesteps = timesteps[None].to(sample.device)
|
| 225 |
+
|
| 226 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 227 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 228 |
+
|
| 229 |
+
t_emb = self.time_proj(timesteps)
|
| 230 |
+
|
| 231 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 232 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 233 |
+
# there might be better ways to encapsulate this.
|
| 234 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
| 235 |
+
emb = self.time_embedding(t_emb) # projection
|
| 236 |
+
|
| 237 |
+
# 2. pre-process
|
| 238 |
+
sample = self.conv_in(sample)
|
| 239 |
+
|
| 240 |
+
# 3. down
|
| 241 |
+
down_block_res_samples = (sample,)
|
| 242 |
+
for index, downsample_block in enumerate(self.down_blocks):
|
| 243 |
+
if (hasattr(downsample_block, "attentions") and downsample_block.attentions is not None) or hasattr(downsample_block, "content_attentions"):
|
| 244 |
+
sample, res_samples = downsample_block(
|
| 245 |
+
hidden_states=sample,
|
| 246 |
+
temb=emb,
|
| 247 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 248 |
+
index=index,
|
| 249 |
+
)
|
| 250 |
+
else:
|
| 251 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 252 |
+
|
| 253 |
+
down_block_res_samples += res_samples
|
| 254 |
+
|
| 255 |
+
# 4. mid
|
| 256 |
+
if self.mid_block is not None:
|
| 257 |
+
sample = self.mid_block(
|
| 258 |
+
sample,
|
| 259 |
+
emb,
|
| 260 |
+
index=content_encoder_downsample_size,
|
| 261 |
+
encoder_hidden_states=encoder_hidden_states
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# 5. up
|
| 265 |
+
offset_out_sum = 0
|
| 266 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 267 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 268 |
+
|
| 269 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 270 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 271 |
+
|
| 272 |
+
# if we have not reached the final block and need to forward the
|
| 273 |
+
# upsample size, we do it here
|
| 274 |
+
if not is_final_block and forward_upsample_size:
|
| 275 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 276 |
+
|
| 277 |
+
if (hasattr(upsample_block, "attentions") and upsample_block.attentions is not None) or hasattr(upsample_block, "content_attentions"):
|
| 278 |
+
sample, offset_out = upsample_block(
|
| 279 |
+
hidden_states=sample,
|
| 280 |
+
temb=emb,
|
| 281 |
+
res_hidden_states_tuple=res_samples,
|
| 282 |
+
style_structure_features=encoder_hidden_states[3],
|
| 283 |
+
encoder_hidden_states=encoder_hidden_states[2],
|
| 284 |
+
)
|
| 285 |
+
offset_out_sum += offset_out
|
| 286 |
+
else:
|
| 287 |
+
sample = upsample_block(
|
| 288 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
# 6. post-process
|
| 292 |
+
sample = self.conv_norm_out(sample)
|
| 293 |
+
sample = self.conv_act(sample)
|
| 294 |
+
sample = self.conv_out(sample)
|
| 295 |
+
|
| 296 |
+
if not return_dict:
|
| 297 |
+
return (sample, offset_out_sum)
|
| 298 |
+
|
| 299 |
+
return UNetOutput(sample=sample)
|
src/modules/unet_blocks.py
ADDED
|
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from torchvision.ops import DeformConv2d
|
| 4 |
+
|
| 5 |
+
from .attention import (SpatialTransformer,
|
| 6 |
+
OffsetRefStrucInter,
|
| 7 |
+
ChannelAttnBlock)
|
| 8 |
+
from .resnet import (Downsample2D,
|
| 9 |
+
ResnetBlock2D,
|
| 10 |
+
Upsample2D)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_down_block(
|
| 14 |
+
down_block_type,
|
| 15 |
+
num_layers,
|
| 16 |
+
in_channels,
|
| 17 |
+
out_channels,
|
| 18 |
+
temb_channels,
|
| 19 |
+
add_downsample,
|
| 20 |
+
resnet_eps,
|
| 21 |
+
resnet_act_fn,
|
| 22 |
+
attn_num_head_channels,
|
| 23 |
+
resnet_groups=None,
|
| 24 |
+
cross_attention_dim=None,
|
| 25 |
+
downsample_padding=None,
|
| 26 |
+
channel_attn=False,
|
| 27 |
+
content_channel=32,
|
| 28 |
+
reduction=32):
|
| 29 |
+
|
| 30 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
| 31 |
+
if down_block_type == "DownBlock2D":
|
| 32 |
+
return DownBlock2D(
|
| 33 |
+
num_layers=num_layers,
|
| 34 |
+
in_channels=in_channels,
|
| 35 |
+
out_channels=out_channels,
|
| 36 |
+
temb_channels=temb_channels,
|
| 37 |
+
add_downsample=add_downsample,
|
| 38 |
+
resnet_eps=resnet_eps,
|
| 39 |
+
resnet_act_fn=resnet_act_fn,
|
| 40 |
+
resnet_groups=resnet_groups,
|
| 41 |
+
downsample_padding=downsample_padding)
|
| 42 |
+
elif down_block_type == "MCADownBlock2D":
|
| 43 |
+
if cross_attention_dim is None:
|
| 44 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
| 45 |
+
return MCADownBlock2D(
|
| 46 |
+
num_layers=num_layers,
|
| 47 |
+
in_channels=in_channels,
|
| 48 |
+
out_channels=out_channels,
|
| 49 |
+
channel_attn=channel_attn,
|
| 50 |
+
temb_channels=temb_channels,
|
| 51 |
+
add_downsample=add_downsample,
|
| 52 |
+
resnet_eps=resnet_eps,
|
| 53 |
+
resnet_act_fn=resnet_act_fn,
|
| 54 |
+
resnet_groups=resnet_groups,
|
| 55 |
+
downsample_padding=downsample_padding,
|
| 56 |
+
cross_attention_dim=cross_attention_dim,
|
| 57 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 58 |
+
content_channel=content_channel,
|
| 59 |
+
reduction=reduction)
|
| 60 |
+
else:
|
| 61 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def get_up_block(
|
| 65 |
+
up_block_type,
|
| 66 |
+
num_layers,
|
| 67 |
+
in_channels,
|
| 68 |
+
out_channels,
|
| 69 |
+
prev_output_channel,
|
| 70 |
+
temb_channels,
|
| 71 |
+
add_upsample,
|
| 72 |
+
resnet_eps,
|
| 73 |
+
resnet_act_fn,
|
| 74 |
+
attn_num_head_channels,
|
| 75 |
+
upblock_index,
|
| 76 |
+
resnet_groups=None,
|
| 77 |
+
cross_attention_dim=None,
|
| 78 |
+
structure_feature_begin=64):
|
| 79 |
+
|
| 80 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
| 81 |
+
if up_block_type == "UpBlock2D":
|
| 82 |
+
return UpBlock2D(
|
| 83 |
+
num_layers=num_layers,
|
| 84 |
+
in_channels=in_channels,
|
| 85 |
+
out_channels=out_channels,
|
| 86 |
+
prev_output_channel=prev_output_channel,
|
| 87 |
+
temb_channels=temb_channels,
|
| 88 |
+
add_upsample=add_upsample,
|
| 89 |
+
resnet_eps=resnet_eps,
|
| 90 |
+
resnet_act_fn=resnet_act_fn,
|
| 91 |
+
resnet_groups=resnet_groups)
|
| 92 |
+
elif up_block_type == "StyleRSIUpBlock2D":
|
| 93 |
+
return StyleRSIUpBlock2D(
|
| 94 |
+
num_layers=num_layers,
|
| 95 |
+
in_channels=in_channels,
|
| 96 |
+
out_channels=out_channels,
|
| 97 |
+
prev_output_channel=prev_output_channel,
|
| 98 |
+
temb_channels=temb_channels,
|
| 99 |
+
add_upsample=add_upsample,
|
| 100 |
+
resnet_eps=resnet_eps,
|
| 101 |
+
resnet_act_fn=resnet_act_fn,
|
| 102 |
+
resnet_groups=resnet_groups,
|
| 103 |
+
cross_attention_dim=cross_attention_dim,
|
| 104 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 105 |
+
structure_feature_begin=structure_feature_begin,
|
| 106 |
+
upblock_index=upblock_index)
|
| 107 |
+
else:
|
| 108 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class UNetMidMCABlock2D(nn.Module):
|
| 112 |
+
def __init__(
|
| 113 |
+
self,
|
| 114 |
+
in_channels: int,
|
| 115 |
+
temb_channels: int,
|
| 116 |
+
channel_attn: bool = False,
|
| 117 |
+
dropout: float = 0.0,
|
| 118 |
+
num_layers: int = 1,
|
| 119 |
+
resnet_eps: float = 1e-6,
|
| 120 |
+
resnet_time_scale_shift: str = "default",
|
| 121 |
+
resnet_act_fn: str = "swish",
|
| 122 |
+
resnet_groups: int = 32,
|
| 123 |
+
resnet_pre_norm: bool = True,
|
| 124 |
+
attn_num_head_channels=1,
|
| 125 |
+
attention_type="default",
|
| 126 |
+
output_scale_factor=1.0,
|
| 127 |
+
cross_attention_dim=1280,
|
| 128 |
+
content_channel=256,
|
| 129 |
+
reduction=32,
|
| 130 |
+
**kwargs,
|
| 131 |
+
):
|
| 132 |
+
super().__init__()
|
| 133 |
+
|
| 134 |
+
self.attention_type = attention_type
|
| 135 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 136 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 137 |
+
|
| 138 |
+
resnets = [
|
| 139 |
+
ResnetBlock2D(
|
| 140 |
+
in_channels=in_channels,
|
| 141 |
+
out_channels=in_channels,
|
| 142 |
+
temb_channels=temb_channels,
|
| 143 |
+
eps=resnet_eps,
|
| 144 |
+
groups=resnet_groups,
|
| 145 |
+
dropout=dropout,
|
| 146 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 147 |
+
non_linearity=resnet_act_fn,
|
| 148 |
+
output_scale_factor=output_scale_factor,
|
| 149 |
+
pre_norm=resnet_pre_norm,
|
| 150 |
+
)
|
| 151 |
+
]
|
| 152 |
+
content_attentions = []
|
| 153 |
+
style_attentions = []
|
| 154 |
+
|
| 155 |
+
for _ in range(num_layers):
|
| 156 |
+
content_attentions.append(
|
| 157 |
+
ChannelAttnBlock(
|
| 158 |
+
in_channels=in_channels + content_channel,
|
| 159 |
+
out_channels=in_channels,
|
| 160 |
+
non_linearity=resnet_act_fn,
|
| 161 |
+
channel_attn=channel_attn,
|
| 162 |
+
reduction=reduction,
|
| 163 |
+
)
|
| 164 |
+
)
|
| 165 |
+
style_attentions.append(
|
| 166 |
+
SpatialTransformer(
|
| 167 |
+
in_channels,
|
| 168 |
+
attn_num_head_channels,
|
| 169 |
+
in_channels // attn_num_head_channels,
|
| 170 |
+
depth=1,
|
| 171 |
+
context_dim=cross_attention_dim,
|
| 172 |
+
num_groups=resnet_groups,
|
| 173 |
+
)
|
| 174 |
+
)
|
| 175 |
+
resnets.append(
|
| 176 |
+
ResnetBlock2D(
|
| 177 |
+
in_channels=in_channels,
|
| 178 |
+
out_channels=in_channels,
|
| 179 |
+
temb_channels=temb_channels,
|
| 180 |
+
eps=resnet_eps,
|
| 181 |
+
groups=resnet_groups,
|
| 182 |
+
dropout=dropout,
|
| 183 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 184 |
+
non_linearity=resnet_act_fn,
|
| 185 |
+
output_scale_factor=output_scale_factor,
|
| 186 |
+
pre_norm=resnet_pre_norm,
|
| 187 |
+
)
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
self.content_attentions = nn.ModuleList(content_attentions)
|
| 191 |
+
self.style_attentions = nn.ModuleList(style_attentions)
|
| 192 |
+
self.resnets = nn.ModuleList(resnets)
|
| 193 |
+
|
| 194 |
+
def forward(
|
| 195 |
+
self,
|
| 196 |
+
hidden_states,
|
| 197 |
+
temb=None,
|
| 198 |
+
encoder_hidden_states=None,
|
| 199 |
+
index=None,
|
| 200 |
+
):
|
| 201 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
| 202 |
+
for content_attn, style_attn, resnet in zip(self.content_attentions, self.style_attentions, self.resnets[1:]):
|
| 203 |
+
|
| 204 |
+
# content
|
| 205 |
+
current_content_feature = encoder_hidden_states[1][index]
|
| 206 |
+
hidden_states = content_attn(hidden_states, current_content_feature)
|
| 207 |
+
|
| 208 |
+
# t_embed
|
| 209 |
+
hidden_states = resnet(hidden_states, temb)
|
| 210 |
+
|
| 211 |
+
# style
|
| 212 |
+
current_style_feature = encoder_hidden_states[0]
|
| 213 |
+
batch_size, channel, height, width = current_style_feature.shape
|
| 214 |
+
current_style_feature = current_style_feature.permute(0, 2, 3, 1).reshape(batch_size, height*width, channel)
|
| 215 |
+
hidden_states = style_attn(hidden_states, context=current_style_feature)
|
| 216 |
+
|
| 217 |
+
return hidden_states
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
class MCADownBlock2D(nn.Module):
|
| 221 |
+
def __init__(
|
| 222 |
+
self,
|
| 223 |
+
in_channels: int,
|
| 224 |
+
out_channels: int,
|
| 225 |
+
temb_channels: int,
|
| 226 |
+
dropout: float = 0.0,
|
| 227 |
+
channel_attn: bool = False,
|
| 228 |
+
num_layers: int = 1,
|
| 229 |
+
resnet_eps: float = 1e-6,
|
| 230 |
+
resnet_time_scale_shift: str = "default",
|
| 231 |
+
resnet_act_fn: str = "swish",
|
| 232 |
+
resnet_groups: int = 32,
|
| 233 |
+
resnet_pre_norm: bool = True,
|
| 234 |
+
attn_num_head_channels=1,
|
| 235 |
+
cross_attention_dim=1280,
|
| 236 |
+
attention_type="default",
|
| 237 |
+
output_scale_factor=1.0,
|
| 238 |
+
downsample_padding=1,
|
| 239 |
+
add_downsample=True,
|
| 240 |
+
content_channel=16,
|
| 241 |
+
reduction=32,
|
| 242 |
+
):
|
| 243 |
+
super().__init__()
|
| 244 |
+
content_attentions = []
|
| 245 |
+
resnets = []
|
| 246 |
+
style_attentions = []
|
| 247 |
+
|
| 248 |
+
self.attention_type = attention_type
|
| 249 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 250 |
+
|
| 251 |
+
for i in range(num_layers):
|
| 252 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 253 |
+
content_attentions.append(
|
| 254 |
+
ChannelAttnBlock(
|
| 255 |
+
in_channels=in_channels+content_channel,
|
| 256 |
+
out_channels=in_channels,
|
| 257 |
+
groups=resnet_groups,
|
| 258 |
+
non_linearity=resnet_act_fn,
|
| 259 |
+
channel_attn=channel_attn,
|
| 260 |
+
reduction=reduction,
|
| 261 |
+
)
|
| 262 |
+
)
|
| 263 |
+
resnets.append(
|
| 264 |
+
ResnetBlock2D(
|
| 265 |
+
in_channels=in_channels,
|
| 266 |
+
out_channels=out_channels,
|
| 267 |
+
temb_channels=temb_channels,
|
| 268 |
+
eps=resnet_eps,
|
| 269 |
+
groups=resnet_groups,
|
| 270 |
+
dropout=dropout,
|
| 271 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 272 |
+
non_linearity=resnet_act_fn,
|
| 273 |
+
output_scale_factor=output_scale_factor,
|
| 274 |
+
pre_norm=resnet_pre_norm,
|
| 275 |
+
)
|
| 276 |
+
)
|
| 277 |
+
print("The style_attention cross attention dim in Down Block {} layer is {}".format(i+1, cross_attention_dim))
|
| 278 |
+
style_attentions.append(
|
| 279 |
+
SpatialTransformer(
|
| 280 |
+
out_channels,
|
| 281 |
+
attn_num_head_channels,
|
| 282 |
+
out_channels // attn_num_head_channels,
|
| 283 |
+
depth=1,
|
| 284 |
+
context_dim=cross_attention_dim,
|
| 285 |
+
num_groups=resnet_groups,
|
| 286 |
+
)
|
| 287 |
+
)
|
| 288 |
+
self.content_attentions = nn.ModuleList(content_attentions)
|
| 289 |
+
self.style_attentions = nn.ModuleList(style_attentions)
|
| 290 |
+
self.resnets = nn.ModuleList(resnets)
|
| 291 |
+
|
| 292 |
+
if num_layers == 1:
|
| 293 |
+
in_channels = out_channels
|
| 294 |
+
if add_downsample:
|
| 295 |
+
self.downsamplers = nn.ModuleList(
|
| 296 |
+
[
|
| 297 |
+
Downsample2D(
|
| 298 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
| 299 |
+
)
|
| 300 |
+
]
|
| 301 |
+
)
|
| 302 |
+
else:
|
| 303 |
+
self.downsamplers = None
|
| 304 |
+
|
| 305 |
+
self.gradient_checkpointing = False
|
| 306 |
+
|
| 307 |
+
def forward(
|
| 308 |
+
self,
|
| 309 |
+
hidden_states,
|
| 310 |
+
index,
|
| 311 |
+
temb=None,
|
| 312 |
+
encoder_hidden_states=None
|
| 313 |
+
):
|
| 314 |
+
output_states = ()
|
| 315 |
+
|
| 316 |
+
for content_attn, resnet, style_attn in zip(self.content_attentions, self.resnets, self.style_attentions):
|
| 317 |
+
|
| 318 |
+
# content
|
| 319 |
+
current_content_feature = encoder_hidden_states[1][index]
|
| 320 |
+
hidden_states = content_attn(hidden_states, current_content_feature)
|
| 321 |
+
|
| 322 |
+
# t_embed
|
| 323 |
+
hidden_states = resnet(hidden_states, temb)
|
| 324 |
+
|
| 325 |
+
# style
|
| 326 |
+
current_style_feature = encoder_hidden_states[0]
|
| 327 |
+
batch_size, channel, height, width = current_style_feature.shape
|
| 328 |
+
current_style_feature = current_style_feature.permute(0, 2, 3, 1).reshape(batch_size, height*width, channel)
|
| 329 |
+
hidden_states = style_attn(hidden_states, context=current_style_feature)
|
| 330 |
+
|
| 331 |
+
output_states += (hidden_states,)
|
| 332 |
+
|
| 333 |
+
if self.downsamplers is not None:
|
| 334 |
+
for downsampler in self.downsamplers:
|
| 335 |
+
hidden_states = downsampler(hidden_states)
|
| 336 |
+
|
| 337 |
+
output_states += (hidden_states,)
|
| 338 |
+
|
| 339 |
+
return hidden_states, output_states
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
class DownBlock2D(nn.Module):
|
| 343 |
+
def __init__(
|
| 344 |
+
self,
|
| 345 |
+
in_channels: int,
|
| 346 |
+
out_channels: int,
|
| 347 |
+
temb_channels: int,
|
| 348 |
+
dropout: float = 0.0,
|
| 349 |
+
num_layers: int = 1,
|
| 350 |
+
resnet_eps: float = 1e-6,
|
| 351 |
+
resnet_time_scale_shift: str = "default",
|
| 352 |
+
resnet_act_fn: str = "swish",
|
| 353 |
+
resnet_groups: int = 32,
|
| 354 |
+
resnet_pre_norm: bool = True,
|
| 355 |
+
output_scale_factor=1.0,
|
| 356 |
+
add_downsample=True,
|
| 357 |
+
downsample_padding=1,
|
| 358 |
+
):
|
| 359 |
+
super().__init__()
|
| 360 |
+
resnets = []
|
| 361 |
+
|
| 362 |
+
for i in range(num_layers):
|
| 363 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 364 |
+
resnets.append(
|
| 365 |
+
ResnetBlock2D(
|
| 366 |
+
in_channels=in_channels,
|
| 367 |
+
out_channels=out_channels,
|
| 368 |
+
temb_channels=temb_channels,
|
| 369 |
+
eps=resnet_eps,
|
| 370 |
+
groups=resnet_groups,
|
| 371 |
+
dropout=dropout,
|
| 372 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 373 |
+
non_linearity=resnet_act_fn,
|
| 374 |
+
output_scale_factor=output_scale_factor,
|
| 375 |
+
pre_norm=resnet_pre_norm,
|
| 376 |
+
)
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
self.resnets = nn.ModuleList(resnets)
|
| 380 |
+
|
| 381 |
+
if num_layers == 1:
|
| 382 |
+
in_channels = out_channels
|
| 383 |
+
if add_downsample:
|
| 384 |
+
self.downsamplers = nn.ModuleList(
|
| 385 |
+
[
|
| 386 |
+
Downsample2D(
|
| 387 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
| 388 |
+
)
|
| 389 |
+
]
|
| 390 |
+
)
|
| 391 |
+
else:
|
| 392 |
+
self.downsamplers = None
|
| 393 |
+
|
| 394 |
+
self.gradient_checkpointing = False
|
| 395 |
+
|
| 396 |
+
def forward(self, hidden_states, temb=None):
|
| 397 |
+
output_states = ()
|
| 398 |
+
|
| 399 |
+
for resnet in self.resnets:
|
| 400 |
+
if self.training and self.gradient_checkpointing:
|
| 401 |
+
|
| 402 |
+
def create_custom_forward(module):
|
| 403 |
+
def custom_forward(*inputs):
|
| 404 |
+
return module(*inputs)
|
| 405 |
+
|
| 406 |
+
return custom_forward
|
| 407 |
+
|
| 408 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 409 |
+
else:
|
| 410 |
+
hidden_states = resnet(hidden_states, temb)
|
| 411 |
+
|
| 412 |
+
output_states += (hidden_states,)
|
| 413 |
+
|
| 414 |
+
if self.downsamplers is not None:
|
| 415 |
+
for downsampler in self.downsamplers:
|
| 416 |
+
hidden_states = downsampler(hidden_states)
|
| 417 |
+
|
| 418 |
+
output_states += (hidden_states,)
|
| 419 |
+
|
| 420 |
+
return hidden_states, output_states
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
class StyleRSIUpBlock2D(nn.Module):
|
| 424 |
+
def __init__(
|
| 425 |
+
self,
|
| 426 |
+
in_channels: int,
|
| 427 |
+
out_channels: int,
|
| 428 |
+
prev_output_channel: int,
|
| 429 |
+
temb_channels: int,
|
| 430 |
+
dropout: float = 0.0,
|
| 431 |
+
num_layers: int = 1,
|
| 432 |
+
resnet_eps: float = 1e-6,
|
| 433 |
+
resnet_time_scale_shift: str = "default",
|
| 434 |
+
resnet_act_fn: str = "swish",
|
| 435 |
+
resnet_groups: int = 32,
|
| 436 |
+
resnet_pre_norm: bool = True,
|
| 437 |
+
attn_num_head_channels=1,
|
| 438 |
+
cross_attention_dim=1280,
|
| 439 |
+
attention_type="default",
|
| 440 |
+
output_scale_factor=1.0,
|
| 441 |
+
downsample_padding=1,
|
| 442 |
+
structure_feature_begin=64,
|
| 443 |
+
upblock_index=1,
|
| 444 |
+
add_upsample=True,
|
| 445 |
+
):
|
| 446 |
+
super().__init__()
|
| 447 |
+
resnets = []
|
| 448 |
+
attentions = []
|
| 449 |
+
sc_interpreter_offsets = []
|
| 450 |
+
dcn_deforms = []
|
| 451 |
+
|
| 452 |
+
self.attention_type = attention_type
|
| 453 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 454 |
+
self.upblock_index = upblock_index
|
| 455 |
+
|
| 456 |
+
for i in range(num_layers):
|
| 457 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 458 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 459 |
+
|
| 460 |
+
sc_interpreter_offsets.append(
|
| 461 |
+
OffsetRefStrucInter(
|
| 462 |
+
res_in_channels=res_skip_channels,
|
| 463 |
+
style_feat_in_channels=int(structure_feature_begin * 2 / upblock_index),
|
| 464 |
+
n_heads=attn_num_head_channels,
|
| 465 |
+
num_groups=resnet_groups,
|
| 466 |
+
)
|
| 467 |
+
)
|
| 468 |
+
dcn_deforms.append(
|
| 469 |
+
DeformConv2d(
|
| 470 |
+
in_channels=res_skip_channels,
|
| 471 |
+
out_channels=res_skip_channels,
|
| 472 |
+
kernel_size=(3, 3),
|
| 473 |
+
stride=1,
|
| 474 |
+
padding=1,
|
| 475 |
+
dilation=1,
|
| 476 |
+
)
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
resnets.append(
|
| 480 |
+
ResnetBlock2D(
|
| 481 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 482 |
+
out_channels=out_channels,
|
| 483 |
+
temb_channels=temb_channels,
|
| 484 |
+
eps=resnet_eps,
|
| 485 |
+
groups=resnet_groups,
|
| 486 |
+
dropout=dropout,
|
| 487 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 488 |
+
non_linearity=resnet_act_fn,
|
| 489 |
+
output_scale_factor=output_scale_factor,
|
| 490 |
+
pre_norm=resnet_pre_norm,
|
| 491 |
+
)
|
| 492 |
+
)
|
| 493 |
+
attentions.append(
|
| 494 |
+
SpatialTransformer(
|
| 495 |
+
out_channels,
|
| 496 |
+
attn_num_head_channels,
|
| 497 |
+
out_channels // attn_num_head_channels,
|
| 498 |
+
depth=1,
|
| 499 |
+
context_dim=cross_attention_dim,
|
| 500 |
+
num_groups=resnet_groups,
|
| 501 |
+
)
|
| 502 |
+
)
|
| 503 |
+
self.sc_interpreter_offsets = nn.ModuleList(sc_interpreter_offsets)
|
| 504 |
+
self.dcn_deforms = nn.ModuleList(dcn_deforms)
|
| 505 |
+
self.attentions = nn.ModuleList(attentions)
|
| 506 |
+
self.resnets = nn.ModuleList(resnets)
|
| 507 |
+
|
| 508 |
+
self.num_layers = num_layers
|
| 509 |
+
|
| 510 |
+
if add_upsample:
|
| 511 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 512 |
+
else:
|
| 513 |
+
self.upsamplers = None
|
| 514 |
+
|
| 515 |
+
self.gradient_checkpointing = False
|
| 516 |
+
|
| 517 |
+
def set_attention_slice(self, slice_size):
|
| 518 |
+
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
| 519 |
+
raise ValueError(
|
| 520 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
| 521 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
| 522 |
+
)
|
| 523 |
+
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
| 524 |
+
raise ValueError(
|
| 525 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
| 526 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
for attn in self.attentions:
|
| 530 |
+
attn._set_attention_slice(slice_size)
|
| 531 |
+
|
| 532 |
+
self.gradient_checkpointing = False
|
| 533 |
+
|
| 534 |
+
def forward(
|
| 535 |
+
self,
|
| 536 |
+
hidden_states,
|
| 537 |
+
res_hidden_states_tuple,
|
| 538 |
+
style_structure_features,
|
| 539 |
+
temb=None,
|
| 540 |
+
encoder_hidden_states=None,
|
| 541 |
+
upsample_size=None,
|
| 542 |
+
):
|
| 543 |
+
total_offset = 0
|
| 544 |
+
|
| 545 |
+
style_content_feat = style_structure_features[-self.upblock_index-2]
|
| 546 |
+
|
| 547 |
+
for i, (sc_inter_offset, dcn_deform, resnet, attn) in \
|
| 548 |
+
enumerate(zip(self.sc_interpreter_offsets, self.dcn_deforms, self.resnets, self.attentions)):
|
| 549 |
+
# pop res hidden states
|
| 550 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 551 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 552 |
+
|
| 553 |
+
# Skip Style Content Interpreter by DCN
|
| 554 |
+
offset = sc_inter_offset(res_hidden_states, style_content_feat)
|
| 555 |
+
offset = offset.contiguous()
|
| 556 |
+
# offset sum
|
| 557 |
+
offset_sum = torch.mean(torch.abs(offset))
|
| 558 |
+
total_offset += offset_sum
|
| 559 |
+
|
| 560 |
+
res_hidden_states = res_hidden_states.contiguous()
|
| 561 |
+
res_hidden_states = dcn_deform(res_hidden_states, offset)
|
| 562 |
+
# concat as input
|
| 563 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 564 |
+
|
| 565 |
+
if self.training and self.gradient_checkpointing:
|
| 566 |
+
|
| 567 |
+
def create_custom_forward(module):
|
| 568 |
+
def custom_forward(*inputs):
|
| 569 |
+
return module(*inputs)
|
| 570 |
+
|
| 571 |
+
return custom_forward
|
| 572 |
+
|
| 573 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 574 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 575 |
+
create_custom_forward(attn), hidden_states, encoder_hidden_states
|
| 576 |
+
)
|
| 577 |
+
else:
|
| 578 |
+
hidden_states = resnet(hidden_states, temb)
|
| 579 |
+
hidden_states = attn(hidden_states, context=encoder_hidden_states)
|
| 580 |
+
|
| 581 |
+
if self.upsamplers is not None:
|
| 582 |
+
for upsampler in self.upsamplers:
|
| 583 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 584 |
+
|
| 585 |
+
offset_out = total_offset / self.num_layers
|
| 586 |
+
|
| 587 |
+
return hidden_states, offset_out
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
class UpBlock2D(nn.Module):
|
| 591 |
+
def __init__(
|
| 592 |
+
self,
|
| 593 |
+
in_channels: int,
|
| 594 |
+
prev_output_channel: int,
|
| 595 |
+
out_channels: int,
|
| 596 |
+
temb_channels: int,
|
| 597 |
+
dropout: float = 0.0,
|
| 598 |
+
num_layers: int = 1,
|
| 599 |
+
resnet_eps: float = 1e-6,
|
| 600 |
+
resnet_time_scale_shift: str = "default",
|
| 601 |
+
resnet_act_fn: str = "swish",
|
| 602 |
+
resnet_groups: int = 32,
|
| 603 |
+
resnet_pre_norm: bool = True,
|
| 604 |
+
output_scale_factor=1.0,
|
| 605 |
+
add_upsample=True,
|
| 606 |
+
):
|
| 607 |
+
super().__init__()
|
| 608 |
+
resnets = []
|
| 609 |
+
|
| 610 |
+
for i in range(num_layers):
|
| 611 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 612 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 613 |
+
|
| 614 |
+
resnets.append(
|
| 615 |
+
ResnetBlock2D(
|
| 616 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 617 |
+
out_channels=out_channels,
|
| 618 |
+
temb_channels=temb_channels,
|
| 619 |
+
eps=resnet_eps,
|
| 620 |
+
groups=resnet_groups,
|
| 621 |
+
dropout=dropout,
|
| 622 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 623 |
+
non_linearity=resnet_act_fn,
|
| 624 |
+
output_scale_factor=output_scale_factor,
|
| 625 |
+
pre_norm=resnet_pre_norm,
|
| 626 |
+
)
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
self.resnets = nn.ModuleList(resnets)
|
| 630 |
+
|
| 631 |
+
if add_upsample:
|
| 632 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 633 |
+
else:
|
| 634 |
+
self.upsamplers = None
|
| 635 |
+
|
| 636 |
+
self.gradient_checkpointing = False
|
| 637 |
+
|
| 638 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
| 639 |
+
for resnet in self.resnets:
|
| 640 |
+
# pop res hidden states
|
| 641 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 642 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 643 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 644 |
+
|
| 645 |
+
if self.training and self.gradient_checkpointing:
|
| 646 |
+
|
| 647 |
+
def create_custom_forward(module):
|
| 648 |
+
def custom_forward(*inputs):
|
| 649 |
+
return module(*inputs)
|
| 650 |
+
|
| 651 |
+
return custom_forward
|
| 652 |
+
|
| 653 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 654 |
+
else:
|
| 655 |
+
hidden_states = resnet(hidden_states, temb)
|
| 656 |
+
|
| 657 |
+
if self.upsamplers is not None:
|
| 658 |
+
for upsampler in self.upsamplers:
|
| 659 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 660 |
+
|
| 661 |
+
return hidden_states
|
ttf/KaiXinSongA.ttf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4e11c8d15dcef64e5b55548e5764442d1b1f3be6fc52346f1338af9b48cf19bd
|
| 3 |
+
size 10220244
|
ttf/KaiXinSongB.ttf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da7bec78a819495232d286244fe0c1f95d147e84811b80ece047169c57cd4a45
|
| 3 |
+
size 27296536
|
utils.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import yaml
|
| 4 |
+
import copy
|
| 5 |
+
import pygame
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from fontTools.ttLib import TTFont
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torchvision.transforms as transforms
|
| 12 |
+
|
| 13 |
+
def save_args_to_yaml(args, output_file):
|
| 14 |
+
# Convert args namespace to a dictionary
|
| 15 |
+
args_dict = vars(args)
|
| 16 |
+
|
| 17 |
+
# Write the dictionary to a YAML file
|
| 18 |
+
with open(output_file, 'w') as yaml_file:
|
| 19 |
+
yaml.dump(args_dict, yaml_file, default_flow_style=False)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def save_single_image(save_dir, image):
|
| 23 |
+
|
| 24 |
+
save_path = f"{save_dir}/out_single.png"
|
| 25 |
+
image.save(save_path)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def save_image_with_content_style(save_dir, image, content_image_pil, content_image_path, style_image_path, resolution):
|
| 29 |
+
|
| 30 |
+
new_image = Image.new('RGB', (resolution*3, resolution))
|
| 31 |
+
if content_image_pil is not None:
|
| 32 |
+
content_image = content_image_pil
|
| 33 |
+
else:
|
| 34 |
+
content_image = Image.open(content_image_path).convert("RGB").resize((resolution, resolution), Image.BILINEAR)
|
| 35 |
+
style_image = Image.open(style_image_path).convert("RGB").resize((resolution, resolution), Image.BILINEAR)
|
| 36 |
+
|
| 37 |
+
new_image.paste(content_image, (0, 0))
|
| 38 |
+
new_image.paste(style_image, (resolution, 0))
|
| 39 |
+
new_image.paste(image, (resolution*2, 0))
|
| 40 |
+
|
| 41 |
+
save_path = f"{save_dir}/out_with_cs.jpg"
|
| 42 |
+
new_image.save(save_path)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def x0_from_epsilon(scheduler, noise_pred, x_t, timesteps):
|
| 46 |
+
"""Return the x_0 from epsilon
|
| 47 |
+
"""
|
| 48 |
+
batch_size = noise_pred.shape[0]
|
| 49 |
+
for i in range(batch_size):
|
| 50 |
+
noise_pred_i = noise_pred[i]
|
| 51 |
+
noise_pred_i = noise_pred_i[None, :]
|
| 52 |
+
t = timesteps[i]
|
| 53 |
+
x_t_i = x_t[i]
|
| 54 |
+
x_t_i = x_t_i[None, :]
|
| 55 |
+
|
| 56 |
+
pred_original_sample_i = scheduler.step(
|
| 57 |
+
model_output=noise_pred_i,
|
| 58 |
+
timestep=t,
|
| 59 |
+
sample=x_t_i,
|
| 60 |
+
# predict_epsilon=True,
|
| 61 |
+
generator=None,
|
| 62 |
+
return_dict=True,
|
| 63 |
+
).pred_original_sample
|
| 64 |
+
if i == 0:
|
| 65 |
+
pred_original_sample = pred_original_sample_i
|
| 66 |
+
else:
|
| 67 |
+
pred_original_sample = torch.cat((pred_original_sample, pred_original_sample_i), dim=0)
|
| 68 |
+
|
| 69 |
+
return pred_original_sample
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def reNormalize_img(pred_original_sample):
|
| 73 |
+
pred_original_sample = (pred_original_sample / 2 + 0.5).clamp(0, 1)
|
| 74 |
+
|
| 75 |
+
return pred_original_sample
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def normalize_mean_std(image):
|
| 79 |
+
transforms_norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 80 |
+
image = transforms_norm(image)
|
| 81 |
+
|
| 82 |
+
return image
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def is_char_in_font(font_path, char):
|
| 86 |
+
TTFont_font = TTFont(font_path)
|
| 87 |
+
cmap = TTFont_font['cmap']
|
| 88 |
+
for subtable in cmap.tables:
|
| 89 |
+
if ord(char) in subtable.cmap:
|
| 90 |
+
return True
|
| 91 |
+
return False
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def load_ttf(ttf_path, fsize=128):
|
| 95 |
+
pygame.init()
|
| 96 |
+
|
| 97 |
+
font = pygame.freetype.Font(ttf_path, size=fsize)
|
| 98 |
+
return font
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def ttf2im(font, char, fsize=128):
|
| 102 |
+
|
| 103 |
+
try:
|
| 104 |
+
surface, _ = font.render(char)
|
| 105 |
+
except:
|
| 106 |
+
print("No glyph for char {}".format(char))
|
| 107 |
+
return
|
| 108 |
+
bg = np.full((fsize, fsize), 255)
|
| 109 |
+
imo = pygame.surfarray.pixels_alpha(surface).transpose(1, 0)
|
| 110 |
+
imo = 255 - np.array(Image.fromarray(imo))
|
| 111 |
+
im = copy.deepcopy(bg)
|
| 112 |
+
h, w = imo.shape[:2]
|
| 113 |
+
if h > fsize:
|
| 114 |
+
h, w = fsize, round(w*fsize/h)
|
| 115 |
+
imo = cv2.resize(imo, (w, h))
|
| 116 |
+
if w > fsize:
|
| 117 |
+
h, w = round(h*fsize/w), fsize
|
| 118 |
+
imo = cv2.resize(imo, (w, h))
|
| 119 |
+
x, y = round((fsize-w)/2), round((fsize-h)/2)
|
| 120 |
+
im[y:h+y, x:x+w] = imo
|
| 121 |
+
pil_im = Image.fromarray(im.astype('uint8')).convert('RGB')
|
| 122 |
+
|
| 123 |
+
return pil_im
|