Spaces:
Running
Running
| """ | |
| Creates a MobileNetV3 Model as defined in: | |
| Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam. (2019). | |
| Searching for MobileNetV3 | |
| arXiv preprint arXiv:1905.02244. | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| import math | |
| __all__ = ['mobilenetv3_large', 'mobilenetv3_small'] | |
| def _make_divisible(v, divisor, min_value=None): | |
| """ | |
| This function is taken from the original tf repo. | |
| It ensures that all layers have a channel number that is divisible by 8 | |
| It can be seen here: | |
| https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py | |
| :param v: | |
| :param divisor: | |
| :param min_value: | |
| :return: | |
| """ | |
| if min_value is None: | |
| min_value = divisor | |
| new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |
| # Make sure that round down does not go down by more than 10%. | |
| if new_v < 0.9 * v: | |
| new_v += divisor | |
| return new_v | |
| class h_sigmoid(nn.Module): | |
| def __init__(self, inplace=True): | |
| super(h_sigmoid, self).__init__() | |
| self.relu = nn.ReLU6(inplace=inplace) | |
| def forward(self, x): | |
| return self.relu(x + 3) / 6 | |
| class h_swish(nn.Module): | |
| def __init__(self, inplace=True): | |
| super(h_swish, self).__init__() | |
| self.sigmoid = h_sigmoid(inplace=inplace) | |
| def forward(self, x): | |
| return x * self.sigmoid(x) | |
| class SELayer(nn.Module): | |
| def __init__(self, channel, reduction=4): | |
| super(SELayer, self).__init__() | |
| self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
| self.fc = nn.Sequential( | |
| nn.Linear(channel, _make_divisible(channel // reduction, 8)), | |
| nn.ReLU(inplace=True), | |
| nn.Linear(_make_divisible(channel // reduction, 8), channel), | |
| h_sigmoid() | |
| ) | |
| def forward(self, x): | |
| b, c, _, _ = x.size() | |
| y = self.avg_pool(x).view(b, c) | |
| y = self.fc(y).view(b, c, 1, 1) | |
| return x * y | |
| def conv_3x3_bn(inp, oup, stride): | |
| return nn.Sequential( | |
| nn.Conv2d(inp, oup, 3, stride, 1, bias=False), | |
| nn.BatchNorm2d(oup), | |
| h_swish() | |
| ) | |
| def conv_1x1_bn(inp, oup): | |
| return nn.Sequential( | |
| nn.Conv2d(inp, oup, 1, 1, 0, bias=False), | |
| nn.BatchNorm2d(oup), | |
| h_swish() | |
| ) | |
| class InvertedResidual(nn.Module): | |
| def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs): | |
| super(InvertedResidual, self).__init__() | |
| assert stride in [1, 2] | |
| self.identity = stride == 1 and inp == oup | |
| if inp == hidden_dim: | |
| self.conv = nn.Sequential( | |
| # dw | |
| nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False), | |
| nn.BatchNorm2d(hidden_dim), | |
| h_swish() if use_hs else nn.ReLU(inplace=True), | |
| # Squeeze-and-Excite | |
| SELayer(hidden_dim) if use_se else nn.Identity(), | |
| # pw-linear | |
| nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | |
| nn.BatchNorm2d(oup), | |
| ) | |
| else: | |
| self.conv = nn.Sequential( | |
| # pw | |
| nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), | |
| nn.BatchNorm2d(hidden_dim), | |
| h_swish() if use_hs else nn.ReLU(inplace=True), | |
| # dw | |
| nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False), | |
| nn.BatchNorm2d(hidden_dim), | |
| # Squeeze-and-Excite | |
| SELayer(hidden_dim) if use_se else nn.Identity(), | |
| h_swish() if use_hs else nn.ReLU(inplace=True), | |
| # pw-linear | |
| nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | |
| nn.BatchNorm2d(oup), | |
| ) | |
| def forward(self, x): | |
| if self.identity: | |
| return x + self.conv(x) | |
| else: | |
| return self.conv(x) | |
| class MobileNetV3(nn.Module): | |
| def __init__(self, cfgs, mode, num_classes=1000, width_mult=1.): | |
| super(MobileNetV3, self).__init__() | |
| # setting of inverted residual blocks | |
| self.cfgs = cfgs | |
| assert mode in ['large', 'small'] | |
| # building first layer | |
| input_channel = _make_divisible(16 * width_mult, 8) | |
| layers = [conv_3x3_bn(3, input_channel, 2)] | |
| # building inverted residual blocks | |
| block = InvertedResidual | |
| for k, t, c, use_se, use_hs, s in self.cfgs: | |
| output_channel = _make_divisible(c * width_mult, 8) | |
| exp_size = _make_divisible(input_channel * t, 8) | |
| layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs)) | |
| input_channel = output_channel | |
| self.features = nn.Sequential(*layers) | |
| # building last several layers | |
| self.conv = conv_1x1_bn(input_channel, exp_size) | |
| self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
| output_channel = {'large': 1280, 'small': 1024} | |
| output_channel = _make_divisible(output_channel[mode] * width_mult, 8) if width_mult > 1.0 else output_channel[mode] | |
| self.classifier = nn.Sequential( | |
| nn.Linear(exp_size, output_channel), | |
| h_swish(), | |
| nn.Dropout(0.2), | |
| nn.Linear(output_channel, num_classes), | |
| ) | |
| self._initialize_weights() | |
| def forward(self, x): | |
| x = self.features(x) | |
| x = self.conv(x) | |
| x = self.avgpool(x) | |
| x = x.view(x.size(0), -1) | |
| x = self.classifier(x) | |
| return x | |
| def _initialize_weights(self): | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| m.weight.data.normal_(0, math.sqrt(2. / n)) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| elif isinstance(m, nn.BatchNorm2d): | |
| m.weight.data.fill_(1) | |
| m.bias.data.zero_() | |
| elif isinstance(m, nn.Linear): | |
| m.weight.data.normal_(0, 0.01) | |
| m.bias.data.zero_() | |
| def mobilenetv3_large(**kwargs): | |
| """ | |
| Constructs a MobileNetV3-Large model | |
| """ | |
| cfgs = [ | |
| # k, t, c, SE, HS, s | |
| [3, 1, 16, 0, 0, 1], | |
| [3, 4, 24, 0, 0, 2], | |
| [3, 3, 24, 0, 0, 1], | |
| [5, 3, 40, 1, 0, 2], | |
| [5, 3, 40, 1, 0, 1], | |
| [5, 3, 40, 1, 0, 1], | |
| [3, 6, 80, 0, 1, 2], | |
| [3, 2.5, 80, 0, 1, 1], | |
| [3, 2.3, 80, 0, 1, 1], | |
| [3, 2.3, 80, 0, 1, 1], | |
| [3, 6, 112, 1, 1, 1], | |
| [3, 6, 112, 1, 1, 1], | |
| [5, 6, 160, 1, 1, 2], | |
| [5, 6, 160, 1, 1, 1], | |
| [5, 6, 160, 1, 1, 1] | |
| ] | |
| return MobileNetV3(cfgs, mode='large', **kwargs) | |
| def mobilenetv3_small(**kwargs): | |
| """ | |
| Constructs a MobileNetV3-Small model | |
| """ | |
| cfgs = [ | |
| # k, t, c, SE, HS, s | |
| [3, 1, 16, 1, 0, 2], | |
| [3, 4.5, 24, 0, 0, 2], | |
| [3, 3.67, 24, 0, 0, 1], | |
| [5, 4, 40, 1, 1, 2], | |
| [5, 6, 40, 1, 1, 1], | |
| [5, 6, 40, 1, 1, 1], | |
| [5, 3, 48, 1, 1, 1], | |
| [5, 3, 48, 1, 1, 1], | |
| [5, 6, 96, 1, 1, 2], | |
| [5, 6, 96, 1, 1, 1], | |
| [5, 6, 96, 1, 1, 1], | |
| ] | |
| return MobileNetV3(cfgs, mode='small', **kwargs) | |