|
import torch |
|
from torch import nn |
|
|
|
__all__ = ["iresnet18", "iresnet34", "iresnet50", "iresnet100", "iresnet200"] |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
groups=groups, |
|
bias=False, |
|
dilation=dilation, |
|
) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
class IBasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__( |
|
self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
groups=1, |
|
base_width=64, |
|
dilation=1, |
|
): |
|
super(IBasicBlock, self).__init__() |
|
if groups != 1 or base_width != 64: |
|
raise ValueError("BasicBlock only supports groups=1 and base_width=64") |
|
if dilation > 1: |
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") |
|
self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05,) |
|
self.conv1 = conv3x3(inplanes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes, eps=1e-05,) |
|
self.prelu = nn.PReLU(planes) |
|
self.conv2 = conv3x3(planes, planes, stride) |
|
self.bn3 = nn.BatchNorm2d(planes, eps=1e-05,) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
out = self.bn1(x) |
|
out = self.conv1(out) |
|
out = self.bn2(out) |
|
out = self.prelu(out) |
|
out = self.conv2(out) |
|
out = self.bn3(out) |
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
out += identity |
|
return out |
|
|
|
|
|
class IResNet(nn.Module): |
|
def __init__( |
|
self, |
|
block, |
|
layers, |
|
dropout=0, |
|
num_features=512, |
|
zero_init_residual=False, |
|
groups=1, |
|
width_per_group=64, |
|
replace_stride_with_dilation=None, |
|
fp16=False, |
|
fc_scale = 7 * 7, |
|
): |
|
super(IResNet, self).__init__() |
|
self.fp16 = fp16 |
|
self.inplanes = 64 |
|
self.dilation = 1 |
|
self.fc_scale = fc_scale |
|
if replace_stride_with_dilation is None: |
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError( |
|
"replace_stride_with_dilation should be None " |
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation) |
|
) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
self.conv1 = nn.Conv2d( |
|
3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False |
|
) |
|
self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05) |
|
self.prelu = nn.PReLU(self.inplanes) |
|
self.layer1 = self._make_layer(block, 64, layers[0], stride=2) |
|
self.layer2 = self._make_layer( |
|
block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0] |
|
) |
|
self.layer3 = self._make_layer( |
|
block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1] |
|
) |
|
self.layer4 = self._make_layer( |
|
block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2] |
|
) |
|
self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05,) |
|
self.dropout = nn.Dropout(p=dropout, inplace=True) |
|
self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features) |
|
self.features = nn.BatchNorm1d(num_features, eps=1e-05) |
|
nn.init.constant_(self.features.weight, 1.0) |
|
self.features.weight.requires_grad = False |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.normal_(m.weight, 0, 0.1) |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, IBasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
nn.BatchNorm2d(planes * block.expansion, eps=1e-05,), |
|
) |
|
layers = [] |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
stride, |
|
downsample, |
|
self.groups, |
|
self.base_width, |
|
previous_dilation, |
|
) |
|
) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
groups=self.groups, |
|
base_width=self.base_width, |
|
dilation=self.dilation, |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
with torch.cuda.amp.autocast(self.fp16): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.prelu(x) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.bn2(x) |
|
|
|
x = torch.flatten(x, 1) |
|
x = self.dropout(x) |
|
x = self.fc(x.float() if self.fp16 else x) |
|
x = self.features(x) |
|
return x |
|
|
|
|
|
def _iresnet(arch, block, layers, pretrained, progress, **kwargs): |
|
model = IResNet(block, layers, **kwargs) |
|
if pretrained: |
|
model_dir = { |
|
'iresnet18': './weights/r18-backbone.pth', |
|
'iresnet34': './weights/r34-backbone.pth', |
|
'iresnet50': './weights/r50-backbone.pth', |
|
'iresnet100': './weights/r100-backbone.pth', |
|
} |
|
pre_trained_weights = torch.load(model_dir[arch], map_location=torch.device('cpu')) |
|
|
|
tmp_dict = {} |
|
for key in pre_trained_weights: |
|
|
|
|
|
|
|
tmp_dict[key] = pre_trained_weights[key] |
|
|
|
|
|
model_dict = model.state_dict() |
|
for key in model_dict: |
|
if key not in tmp_dict: |
|
tmp_dict[key] = model_dict[key] |
|
|
|
model.load_state_dict(tmp_dict, strict=False) |
|
print("load pre-trained iresnet from %s" % model_dir[arch]) |
|
|
|
return model |
|
|
|
|
|
def iresnet18(pretrained=False, progress=True, **kwargs): |
|
return _iresnet( |
|
"iresnet18", IBasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs |
|
) |
|
|
|
|
|
def iresnet34(pretrained=False, progress=True, **kwargs): |
|
return _iresnet( |
|
"iresnet34", IBasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs |
|
) |
|
|
|
|
|
def iresnet50(pretrained=False, progress=True, **kwargs): |
|
return _iresnet( |
|
"iresnet50", IBasicBlock, [3, 4, 14, 3], pretrained, progress, **kwargs |
|
) |
|
|
|
|
|
def iresnet100(pretrained=False, progress=True, **kwargs): |
|
return _iresnet( |
|
"iresnet100", IBasicBlock, [3, 13, 30, 3], pretrained, progress, **kwargs |
|
) |
|
|
|
|
|
def iresnet200(pretrained=False, progress=True, **kwargs): |
|
return _iresnet( |
|
"iresnet200", IBasicBlock, [6, 26, 60, 6], pretrained, progress, **kwargs |
|
) |
|
|
|
|
|
@torch.no_grad() |
|
def identification(folder: str = './images', target_idx: int = 0): |
|
import os |
|
from PIL import Image |
|
import torch |
|
import torchvision.transforms as transforms |
|
import torch.nn.functional as F |
|
import kornia |
|
import numpy as np |
|
|
|
os.makedirs('crop', exist_ok=True) |
|
img_list = os.listdir(folder) |
|
img_list.sort() |
|
n = len(img_list) |
|
trans = transforms.Compose([ |
|
transforms.Resize(256), |
|
transforms.CenterCrop(224), |
|
transforms.ToTensor(), |
|
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
trans_matrix = torch.tensor( |
|
[[[1.07695457, -0.03625215, -1.56352194], |
|
[0.03625215, 1.07695457, -5.32134629]]], |
|
requires_grad=False).float().cuda() |
|
|
|
fid_model = iresnet50(pretrained=True).cuda().eval() |
|
|
|
def save_tensor_to_img(tensor: torch.Tensor, path: str, scale=255): |
|
tensor = tensor.permute(0, 2, 3, 1)[0] |
|
tensor = tensor.clamp(0, 1) |
|
tensor = tensor * scale |
|
tensor_np = tensor.cpu().numpy().astype(np.uint8) |
|
if tensor_np.shape[-1] == 1: |
|
tensor_np = tensor_np.repeat(3, axis=-1) |
|
tensor_img = Image.fromarray(tensor_np) |
|
tensor_img.save(path) |
|
|
|
feats = torch.zeros((n, 512), dtype=torch.float32).cuda() |
|
for idx, img_path in enumerate(img_list): |
|
img_pil = Image.open(os.path.join(folder, img_path)).convert('RGB') |
|
img_tensor = trans(img_pil).unsqueeze(0).cuda() |
|
|
|
|
|
save_tensor_to_img(img_tensor / 2 + 0.5, path=os.path.join('./crop', img_path)) |
|
img_tensor = F.interpolate(img_tensor, size=112, mode="bilinear", align_corners=True) |
|
|
|
feat = fid_model(img_tensor) |
|
feats[idx] = feat |
|
|
|
target_feat = feats[target_idx].unsqueeze(0) |
|
cosine_sim = F.cosine_similarity(target_feat, feats, 1) |
|
print(cosine_sim.shape) |
|
|
|
print('====== similarity with %s ======' % img_list[target_idx]) |
|
for idx in range(n): |
|
print('[%d] %s = %.2f' % (idx, img_list[idx], float(cosine_sim[idx].cpu()))) |
|
|
|
|
|
if __name__ == '__main__': |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser(description="arcface") |
|
parser.add_argument("-i", "--target_idx", type=int, default=0) |
|
args = parser.parse_args() |
|
|
|
identification(target_idx=args.target_idx) |
|
|
|
|