|
import gradio as gr |
|
import spaces |
|
import torch |
|
import os |
|
from compel import Compel, ReturnedEmbeddingsType |
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
model_name = os.environ.get('MODEL_NAME', 'UnfilteredAI/NSFW-gen-v2.1') |
|
pipe = DiffusionPipeline.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16 |
|
) |
|
pipe.to('cuda') |
|
|
|
|
|
compel = Compel( |
|
tokenizer=[pipe.tokenizer, pipe.tokenizer_2], |
|
text_encoder=[pipe.text_encoder, pipe.text_encoder_2], |
|
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, |
|
requires_pooled=[False, True] |
|
) |
|
|
|
|
|
default_negative_prompt = "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn, (deformed | distorted | disfigured:1.3), bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers:1.4, disconnected limbs, blurry, amputation." |
|
|
|
|
|
example_prompts = [ |
|
["a gorgeous nude model posing seductively in a luxurious bedroom, perfect lighting, detailed skin texture, professional photography, 8k", default_negative_prompt, 40, 7.5, 1024, 1024, 4], |
|
["two fully nude naked asian female fitness models doing sit-ups in the gym, filmed from front, realistic, professional photography, 8k", default_negative_prompt, 45, 7.0, 1024, 1024, 4], |
|
] |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def generate(prompt, negative_prompt, num_inference_steps, guidance_scale, width, height, num_samples, progress=gr.Progress()): |
|
progress(0, desc="Preparing") |
|
embeds, pooled = compel(prompt) |
|
neg_embeds, neg_pooled = compel(negative_prompt) |
|
|
|
progress(0.1, desc="Generating images") |
|
|
|
|
|
def callback_on_step_end(pipe, i, t, callback_kwargs): |
|
progress((i + 1) / num_inference_steps) |
|
return callback_kwargs |
|
|
|
images = pipe( |
|
prompt_embeds=embeds, |
|
pooled_prompt_embeds=pooled, |
|
negative_prompt_embeds=neg_embeds, |
|
negative_pooled_prompt_embeds=neg_pooled, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
width=width, |
|
height=height, |
|
num_images_per_prompt=num_samples, |
|
callback_on_step_end=callback_on_step_end |
|
).images |
|
|
|
return images |
|
|
|
|
|
css = """ |
|
.gallery-item { |
|
transition: transform 0.2s; |
|
box-shadow: 0 4px 8px rgba(0,0,0,0.1); |
|
border-radius: 10px; |
|
} |
|
.gallery-item:hover { |
|
transform: scale(1.03); |
|
box-shadow: 0 8px 16px rgba(0,0,0,0.2); |
|
} |
|
.container { |
|
max-width: 1200px; |
|
margin: auto; |
|
} |
|
.header { |
|
text-align: center; |
|
margin-bottom: 2rem; |
|
padding: 1rem; |
|
background: linear-gradient(90deg, rgba(76,0,161,0.8) 0%, rgba(28,110,164,0.8) 100%); |
|
border-radius: 10px; |
|
color: white; |
|
} |
|
.slider-container { |
|
background-color: #f5f5f5; |
|
padding: 1rem; |
|
border-radius: 10px; |
|
margin-bottom: 1rem; |
|
} |
|
.prompt-container { |
|
background-color: #f0f8ff; |
|
padding: 1rem; |
|
border-radius: 10px; |
|
margin-bottom: 1rem; |
|
border: 1px solid #d0e8ff; |
|
} |
|
.examples-header { |
|
background: linear-gradient(90deg, rgba(41,128,185,0.7) 0%, rgba(142,68,173,0.7) 100%); |
|
color: white; |
|
padding: 0.5rem; |
|
border-radius: 8px; |
|
text-align: center; |
|
margin-bottom: 0.5rem; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: |
|
gr.HTML(""" |
|
<div class="header"> |
|
<h1>🎨 Unfiltered AI NSFW Image Generator</h1> |
|
<p>Enter creative prompts and generate high-quality images.</p> |
|
</div> |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
with gr.Group(elem_classes="prompt-container"): |
|
prompt = gr.Textbox(label="Prompt", placeholder="Describe your desired image...", lines=3) |
|
negative_prompt = gr.Textbox( |
|
label="Negative Prompt", |
|
value=default_negative_prompt, |
|
lines=3 |
|
) |
|
|
|
with gr.Group(elem_classes="slider-container"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
steps = gr.Slider(minimum=20, maximum=100, value=60, step=1, label="Inference Steps (Quality)", info="Higher values improve quality (longer generation time)") |
|
guidance = gr.Slider(minimum=1, maximum=15, value=7, step=0.1, label="Guidance Scale (Creativity)", info="Lower values create more creative results") |
|
|
|
with gr.Column(): |
|
with gr.Row(): |
|
width = gr.Slider(minimum=512, maximum=1536, value=1024, step=128, label="Width") |
|
height = gr.Slider(minimum=512, maximum=1536, value=1024, step=128, label="Height") |
|
|
|
num_samples = gr.Slider(minimum=1, maximum=8, value=4, step=1, label="Number of Images", info="Number of images to generate at once") |
|
|
|
generate_btn = gr.Button("🚀 Generate Images", variant="primary", size="lg") |
|
|
|
with gr.Column(scale=3): |
|
output_gallery = gr.Gallery(label="Generated Images", elem_classes="gallery-item", columns=2, object_fit="contain", height=650) |
|
|
|
gr.HTML("""<div class="examples-header"><h3>✨ Example Prompts</h3></div>""") |
|
gr.Examples( |
|
examples=example_prompts, |
|
inputs=[prompt, negative_prompt, steps, guidance, width, height, num_samples], |
|
outputs=output_gallery, |
|
fn=generate, |
|
cache_examples=True, |
|
) |
|
|
|
|
|
generate_btn.click( |
|
fn=generate, |
|
inputs=[prompt, negative_prompt, steps, guidance, width, height, num_samples], |
|
outputs=output_gallery |
|
) |
|
|
|
gr.HTML(""" |
|
<div style="text-align: center; margin-top: 20px; padding: 10px; background-color: #f0f0f0; border-radius: 10px;"> |
|
<p>💡 Tip: For high-quality images, use detailed prompts and higher inference steps.</p> |
|
<p>Example: Add quality terms like "professional photography, 8k, highly detailed, sharp focus, HDR" to your prompts.</p> |
|
</div> |
|
""") |
|
|
|
demo.launch() |