Spaces:
Running
on
Zero
Running
on
Zero
update app.py
Browse files- .gitignore +9 -0
- README.md +3 -4
- app.py +147 -0
- requirements.txt +17 -0
- src_inference/__init__.py +0 -0
- src_inference/layers_cache.py +366 -0
- src_inference/lora_helper.py +194 -0
- src_inference/pipeline.py +746 -0
- test_imgs/00.png +0 -0
- test_imgs/01.png +0 -0
- test_imgs/02.png +0 -0
- test_imgs/03.png +0 -0
- test_imgs/04.png +0 -0
.gitignore
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output/
|
2 |
+
results/
|
3 |
+
datasets/
|
4 |
+
wandb/
|
5 |
+
scripts/
|
6 |
+
__pycache__/
|
7 |
+
default_config.yaml
|
8 |
+
getDataset.py
|
9 |
+
train.py
|
README.md
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
---
|
2 |
title: OmniConsistency
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.31.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: mit
|
11 |
short_description: Generate styled image from reference image and external LoRA
|
12 |
---
|
13 |
|
|
|
1 |
---
|
2 |
title: OmniConsistency
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.31.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
short_description: Generate styled image from reference image and external LoRA
|
11 |
---
|
12 |
|
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import time
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from src_inference.pipeline import FluxPipeline
|
8 |
+
from src_inference.lora_helper import set_single_lora
|
9 |
+
import random
|
10 |
+
|
11 |
+
base_path = "black-forest-labs/FLUX.1-dev"
|
12 |
+
|
13 |
+
# Download OmniConsistency LoRA using hf_hub_download
|
14 |
+
omni_consistency_path = hf_hub_download(repo_id="showlab/OmniConsistency",
|
15 |
+
filename="OmniConsistency.safetensors",
|
16 |
+
local_dir="./Model")
|
17 |
+
|
18 |
+
# Initialize the pipeline with the model
|
19 |
+
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16).to("cuda")
|
20 |
+
|
21 |
+
# Set LoRA weights
|
22 |
+
set_single_lora(pipe.transformer, omni_consistency_path, lora_weights=[1], cond_size=512)
|
23 |
+
|
24 |
+
# Function to clear cache
|
25 |
+
def clear_cache(transformer):
|
26 |
+
for name, attn_processor in transformer.attn_processors.items():
|
27 |
+
attn_processor.bank_kv.clear()
|
28 |
+
|
29 |
+
# Function to download all LoRAs in advance
|
30 |
+
def download_all_loras():
|
31 |
+
lora_names = [
|
32 |
+
"3D_Chibi", "American_Cartoon", "Chinese_Ink",
|
33 |
+
"Clay_Toy", "Fabric", "Ghibli", "Irasutoya",
|
34 |
+
"Jojo", "LEGO", "Line", "Macaron",
|
35 |
+
"Oil_Painting", "Origami", "Paper_Cutting",
|
36 |
+
"Picasso", "Pixel", "Poly", "Pop_Art",
|
37 |
+
"Rick_Morty", "Snoopy", "Van_Gogh", "Vector"
|
38 |
+
]
|
39 |
+
for lora_name in lora_names:
|
40 |
+
hf_hub_download(repo_id="showlab/OmniConsistency",
|
41 |
+
filename=f"LoRAs/{lora_name}_rank128_bf16.safetensors",
|
42 |
+
local_dir="./LoRAs")
|
43 |
+
|
44 |
+
# Download all LoRAs in advance before the interface is launched
|
45 |
+
download_all_loras()
|
46 |
+
|
47 |
+
# Main function to generate the image
|
48 |
+
@spaces.GPU()
|
49 |
+
def generate_image(lora_name, prompt, uploaded_image, width, height, guidance_scale, num_inference_steps, seed):
|
50 |
+
# Download specific LoRA based on selection (use local directory as LoRAs are already downloaded)
|
51 |
+
lora_path = f"./LoRAs/LoRAs/{lora_name}_rank128_bf16.safetensors"
|
52 |
+
|
53 |
+
# Load the specific LoRA weights
|
54 |
+
pipe.unload_lora_weights()
|
55 |
+
pipe.load_lora_weights("./LoRAs/LoRAs", weight_name=f"{lora_name}_rank128_bf16.safetensors")
|
56 |
+
|
57 |
+
# Prepare input image
|
58 |
+
spatial_image = [uploaded_image.convert("RGB")]
|
59 |
+
subject_images = []
|
60 |
+
|
61 |
+
start_time = time.time()
|
62 |
+
|
63 |
+
# Generate the image
|
64 |
+
image = pipe(
|
65 |
+
prompt,
|
66 |
+
height=(int(height) // 8) * 8,
|
67 |
+
width=(int(width) // 8) * 8,
|
68 |
+
guidance_scale=guidance_scale,
|
69 |
+
num_inference_steps=num_inference_steps,
|
70 |
+
max_sequence_length=512,
|
71 |
+
generator=torch.Generator("cpu").manual_seed(seed),
|
72 |
+
spatial_images=spatial_image,
|
73 |
+
subject_images=subject_images,
|
74 |
+
cond_size=512,
|
75 |
+
).images[0]
|
76 |
+
|
77 |
+
end_time = time.time()
|
78 |
+
elapsed_time = end_time - start_time
|
79 |
+
print(f"code running time: {elapsed_time} s")
|
80 |
+
|
81 |
+
# Clear cache after generation
|
82 |
+
clear_cache(pipe.transformer)
|
83 |
+
|
84 |
+
return image
|
85 |
+
|
86 |
+
# Example data
|
87 |
+
examples = [
|
88 |
+
["3D_Chibi", "3D Chibi style", Image.open("./test_imgs/00.png"), 680, 1024, 3.5, 24, 42],
|
89 |
+
["Origami", "Origami style", Image.open("./test_imgs/01.png"), 560, 1024, 3.5, 24, 42],
|
90 |
+
["American_Cartoon", "American Cartoon style", Image.open("./test_imgs/02.png"), 568, 1024, 3.5, 24, 42],
|
91 |
+
["Origami", "Origami style", Image.open("./test_imgs/03.png"), 768, 672, 3.5, 24, 42],
|
92 |
+
["Paper_Cutting", "Paper Cutting style", Image.open("./test_imgs/04.png"), 696, 1024, 3.5, 24, 42]
|
93 |
+
]
|
94 |
+
|
95 |
+
# Gradio interface setup
|
96 |
+
def create_gradio_interface():
|
97 |
+
lora_names = [
|
98 |
+
"3D_Chibi", "American_Cartoon", "Chinese_Ink",
|
99 |
+
"Clay_Toy", "Fabric", "Ghibli", "Irasutoya",
|
100 |
+
"Jojo", "LEGO", "Line", "Macaron",
|
101 |
+
"Oil_Painting", "Origami", "Paper_Cutting",
|
102 |
+
"Picasso", "Pixel", "Poly", "Pop_Art",
|
103 |
+
"Rick_Morty", "Snoopy", "Van_Gogh", "Vector"
|
104 |
+
]
|
105 |
+
|
106 |
+
with gr.Blocks() as demo:
|
107 |
+
gr.Markdown("# OmniConsistency LoRA Image Generation")
|
108 |
+
gr.Markdown("Select a LoRA, enter a prompt, and upload an image to generate a new image with OmniConsistency.")
|
109 |
+
with gr.Row():
|
110 |
+
with gr.Column(scale=1):
|
111 |
+
lora_dropdown = gr.Dropdown(lora_names, label="Select LoRA")
|
112 |
+
prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt...")
|
113 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
114 |
+
with gr.Column(scale=1):
|
115 |
+
width_box = gr.Textbox(label="Width", value="1024")
|
116 |
+
height_box = gr.Textbox(label="Height", value="1024")
|
117 |
+
guidance_slider = gr.Slider(minimum=0.1, maximum=20, value=3.5, step=0.1, label="Guidance Scale")
|
118 |
+
steps_slider = gr.Slider(minimum=1, maximum=50, value=25, step=1, label="Inference Steps")
|
119 |
+
seed_slider = gr.Slider(minimum=1, maximum=10000000000, value=42, step=1, label="Seed")
|
120 |
+
generate_button = gr.Button("Generate")
|
121 |
+
output_image = gr.Image(type="pil", label="Generated Image")
|
122 |
+
# Add examples for Generation
|
123 |
+
gr.Examples(
|
124 |
+
examples=examples,
|
125 |
+
inputs=[lora_dropdown, prompt_box, image_input, height_box, width_box, guidance_slider, steps_slider, seed_slider],
|
126 |
+
outputs=output_image,
|
127 |
+
fn=generate_image,
|
128 |
+
cache_examples=False,
|
129 |
+
label="Examples"
|
130 |
+
)
|
131 |
+
|
132 |
+
generate_button.click(
|
133 |
+
fn=generate_image,
|
134 |
+
inputs=[
|
135 |
+
lora_dropdown, prompt_box, image_input,
|
136 |
+
width_box, height_box, guidance_slider,
|
137 |
+
steps_slider, seed_slider
|
138 |
+
],
|
139 |
+
outputs=output_image
|
140 |
+
)
|
141 |
+
|
142 |
+
return demo
|
143 |
+
|
144 |
+
|
145 |
+
# Launch the Gradio interface
|
146 |
+
interface = create_gradio_interface()
|
147 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu124
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
torchaudio==2.3.1
|
5 |
+
diffusers==0.32.2
|
6 |
+
easydict==1.13
|
7 |
+
einops==0.8.1
|
8 |
+
peft==0.14.0
|
9 |
+
pillow==11.0.0
|
10 |
+
protobuf==5.29.3
|
11 |
+
requests==2.32.3
|
12 |
+
safetensors==0.5.2
|
13 |
+
sentencepiece==0.2.0
|
14 |
+
spaces==0.34.1
|
15 |
+
transformers==4.49.0
|
16 |
+
datasets
|
17 |
+
wandb
|
src_inference/__init__.py
ADDED
File without changes
|
src_inference/layers_cache.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import math
|
3 |
+
from typing import Callable, List, Optional, Tuple, Union
|
4 |
+
from einops import rearrange
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import Tensor
|
9 |
+
from diffusers.models.attention_processor import Attention
|
10 |
+
|
11 |
+
class LoRALinearLayer(nn.Module):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
in_features: int,
|
15 |
+
out_features: int,
|
16 |
+
rank: int = 4,
|
17 |
+
network_alpha: Optional[float] = None,
|
18 |
+
device: Optional[Union[torch.device, str]] = None,
|
19 |
+
dtype: Optional[torch.dtype] = None,
|
20 |
+
cond_width=512,
|
21 |
+
cond_height=512,
|
22 |
+
number=0,
|
23 |
+
n_loras=1
|
24 |
+
):
|
25 |
+
super().__init__()
|
26 |
+
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
|
27 |
+
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
|
28 |
+
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
29 |
+
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
30 |
+
self.network_alpha = network_alpha
|
31 |
+
self.rank = rank
|
32 |
+
self.out_features = out_features
|
33 |
+
self.in_features = in_features
|
34 |
+
|
35 |
+
nn.init.normal_(self.down.weight, std=1 / rank)
|
36 |
+
nn.init.zeros_(self.up.weight)
|
37 |
+
|
38 |
+
self.cond_height = cond_height
|
39 |
+
self.cond_width = cond_width
|
40 |
+
self.number = number
|
41 |
+
self.n_loras = n_loras
|
42 |
+
|
43 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
44 |
+
orig_dtype = hidden_states.dtype
|
45 |
+
dtype = self.down.weight.dtype
|
46 |
+
|
47 |
+
####
|
48 |
+
batch_size = hidden_states.shape[0]
|
49 |
+
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
|
50 |
+
block_size = hidden_states.shape[1] - cond_size * self.n_loras
|
51 |
+
shape = (batch_size, hidden_states.shape[1], 3072)
|
52 |
+
mask = torch.ones(shape, device=hidden_states.device, dtype=dtype)
|
53 |
+
mask[:, :block_size+self.number*cond_size, :] = 0
|
54 |
+
mask[:, block_size+(self.number+1)*cond_size:, :] = 0
|
55 |
+
hidden_states = mask * hidden_states
|
56 |
+
####
|
57 |
+
|
58 |
+
down_hidden_states = self.down(hidden_states.to(dtype))
|
59 |
+
up_hidden_states = self.up(down_hidden_states)
|
60 |
+
|
61 |
+
if self.network_alpha is not None:
|
62 |
+
up_hidden_states *= self.network_alpha / self.rank
|
63 |
+
|
64 |
+
return up_hidden_states.to(orig_dtype)
|
65 |
+
|
66 |
+
|
67 |
+
class MultiSingleStreamBlockLoraProcessor(nn.Module):
|
68 |
+
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
|
69 |
+
super().__init__()
|
70 |
+
# Initialize a list to store the LoRA layers
|
71 |
+
self.n_loras = n_loras
|
72 |
+
self.cond_width = cond_width
|
73 |
+
self.cond_height = cond_height
|
74 |
+
|
75 |
+
self.q_loras = nn.ModuleList([
|
76 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
77 |
+
for i in range(n_loras)
|
78 |
+
])
|
79 |
+
self.k_loras = nn.ModuleList([
|
80 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
81 |
+
for i in range(n_loras)
|
82 |
+
])
|
83 |
+
self.v_loras = nn.ModuleList([
|
84 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
85 |
+
for i in range(n_loras)
|
86 |
+
])
|
87 |
+
self.lora_weights = lora_weights
|
88 |
+
self.bank_attn = None
|
89 |
+
self.bank_kv = []
|
90 |
+
|
91 |
+
|
92 |
+
def __call__(self,
|
93 |
+
attn: Attention,
|
94 |
+
hidden_states: torch.FloatTensor,
|
95 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
96 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
97 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
98 |
+
use_cond = False,
|
99 |
+
image_emb: torch.FloatTensor = None
|
100 |
+
) -> torch.FloatTensor:
|
101 |
+
|
102 |
+
scaled_cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
|
103 |
+
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
104 |
+
scaled_seq_len = hidden_states.shape[1]
|
105 |
+
block_size = scaled_seq_len - scaled_cond_size * self.n_loras
|
106 |
+
|
107 |
+
if len(self.bank_kv)== 0:
|
108 |
+
cache = True
|
109 |
+
else:
|
110 |
+
cache = False
|
111 |
+
|
112 |
+
if cache:
|
113 |
+
query = attn.to_q(hidden_states)
|
114 |
+
key = attn.to_k(hidden_states)
|
115 |
+
value = attn.to_v(hidden_states)
|
116 |
+
for i in range(self.n_loras):
|
117 |
+
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
|
118 |
+
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
|
119 |
+
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
|
120 |
+
|
121 |
+
inner_dim = key.shape[-1]
|
122 |
+
head_dim = inner_dim // attn.heads
|
123 |
+
|
124 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
125 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
126 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
127 |
+
|
128 |
+
|
129 |
+
self.bank_kv.append(key[:, :, block_size:, :])
|
130 |
+
self.bank_kv.append(value[:, :, block_size:, :])
|
131 |
+
|
132 |
+
if attn.norm_q is not None:
|
133 |
+
query = attn.norm_q(query)
|
134 |
+
if attn.norm_k is not None:
|
135 |
+
key = attn.norm_k(key)
|
136 |
+
|
137 |
+
if image_rotary_emb is not None:
|
138 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
139 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
140 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
141 |
+
|
142 |
+
num_cond_blocks = self.n_loras
|
143 |
+
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
|
144 |
+
mask[ :block_size, :] = 0 # First block_size row
|
145 |
+
for i in range(num_cond_blocks):
|
146 |
+
start = i * scaled_cond_size + block_size
|
147 |
+
end = (i + 1) * scaled_cond_size + block_size
|
148 |
+
mask[start:end, start:end] = 0 # Diagonal blocks
|
149 |
+
mask = mask * -1e20
|
150 |
+
mask = mask.to(query.dtype)
|
151 |
+
|
152 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
|
153 |
+
else:
|
154 |
+
query = attn.to_q(hidden_states)
|
155 |
+
key = attn.to_k(hidden_states)
|
156 |
+
value = attn.to_v(hidden_states)
|
157 |
+
|
158 |
+
inner_dim = query.shape[-1]
|
159 |
+
head_dim = inner_dim // attn.heads
|
160 |
+
|
161 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
162 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
163 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
164 |
+
|
165 |
+
zero_pad = torch.zeros_like(self.bank_kv[0], dtype=query.dtype, device=query.device)
|
166 |
+
|
167 |
+
|
168 |
+
key = torch.concat([key[:, :, :scaled_seq_len, :], self.bank_kv[0]], dim=-2)
|
169 |
+
value = torch.concat([value[:, :, :scaled_seq_len, :], self.bank_kv[1]], dim=-2)
|
170 |
+
|
171 |
+
if attn.norm_q is not None:
|
172 |
+
query = attn.norm_q(query)
|
173 |
+
if attn.norm_k is not None:
|
174 |
+
key = attn.norm_k(key)
|
175 |
+
|
176 |
+
query = torch.concat([query[:, :, :scaled_seq_len, :], zero_pad], dim=-2)
|
177 |
+
|
178 |
+
if image_rotary_emb is not None:
|
179 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
180 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
181 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
182 |
+
|
183 |
+
query = query[:, :, :scaled_seq_len, :]
|
184 |
+
|
185 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
|
186 |
+
|
187 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
188 |
+
hidden_states = hidden_states.to(query.dtype)
|
189 |
+
|
190 |
+
hidden_states = hidden_states[:, : scaled_seq_len,:]
|
191 |
+
|
192 |
+
return hidden_states
|
193 |
+
|
194 |
+
|
195 |
+
class MultiDoubleStreamBlockLoraProcessor(nn.Module):
|
196 |
+
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
|
197 |
+
super().__init__()
|
198 |
+
|
199 |
+
# Initialize a list to store the LoRA layers
|
200 |
+
self.n_loras = n_loras
|
201 |
+
self.cond_width = cond_width
|
202 |
+
self.cond_height = cond_height
|
203 |
+
self.q_loras = nn.ModuleList([
|
204 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
205 |
+
for i in range(n_loras)
|
206 |
+
])
|
207 |
+
self.k_loras = nn.ModuleList([
|
208 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
209 |
+
for i in range(n_loras)
|
210 |
+
])
|
211 |
+
self.v_loras = nn.ModuleList([
|
212 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
213 |
+
for i in range(n_loras)
|
214 |
+
])
|
215 |
+
self.proj_loras = nn.ModuleList([
|
216 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
217 |
+
for i in range(n_loras)
|
218 |
+
])
|
219 |
+
self.lora_weights = lora_weights
|
220 |
+
self.bank_attn = None
|
221 |
+
self.bank_kv = []
|
222 |
+
|
223 |
+
|
224 |
+
def __call__(self,
|
225 |
+
attn: Attention,
|
226 |
+
hidden_states: torch.FloatTensor,
|
227 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
228 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
229 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
230 |
+
use_cond=False,
|
231 |
+
image_emb: torch.FloatTensor = None
|
232 |
+
) -> torch.FloatTensor:
|
233 |
+
|
234 |
+
scaled_cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
|
235 |
+
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
236 |
+
block_size = hidden_states.shape[1]
|
237 |
+
scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1]
|
238 |
+
scaled_block_size = scaled_seq_len
|
239 |
+
|
240 |
+
# `context` projections.
|
241 |
+
inner_dim = 3072
|
242 |
+
head_dim = inner_dim // attn.heads
|
243 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
244 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
245 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
246 |
+
|
247 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
248 |
+
batch_size, -1, attn.heads, head_dim
|
249 |
+
).transpose(1, 2)
|
250 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
251 |
+
batch_size, -1, attn.heads, head_dim
|
252 |
+
).transpose(1, 2)
|
253 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
254 |
+
batch_size, -1, attn.heads, head_dim
|
255 |
+
).transpose(1, 2)
|
256 |
+
|
257 |
+
if attn.norm_added_q is not None:
|
258 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
259 |
+
if attn.norm_added_k is not None:
|
260 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
261 |
+
|
262 |
+
if len(self.bank_kv)== 0:
|
263 |
+
cache = True
|
264 |
+
else:
|
265 |
+
cache = False
|
266 |
+
|
267 |
+
if cache:
|
268 |
+
|
269 |
+
query = attn.to_q(hidden_states)
|
270 |
+
key = attn.to_k(hidden_states)
|
271 |
+
value = attn.to_v(hidden_states)
|
272 |
+
for i in range(self.n_loras):
|
273 |
+
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
|
274 |
+
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
|
275 |
+
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
|
276 |
+
|
277 |
+
inner_dim = key.shape[-1]
|
278 |
+
head_dim = inner_dim // attn.heads
|
279 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
280 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
281 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
282 |
+
|
283 |
+
|
284 |
+
self.bank_kv.append(key)
|
285 |
+
self.bank_kv.append(value)
|
286 |
+
|
287 |
+
if attn.norm_q is not None:
|
288 |
+
query = attn.norm_q(query)
|
289 |
+
if attn.norm_k is not None:
|
290 |
+
key = attn.norm_k(key)
|
291 |
+
|
292 |
+
# attention
|
293 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
294 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
295 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
296 |
+
|
297 |
+
if image_rotary_emb is not None:
|
298 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
299 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
300 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
301 |
+
|
302 |
+
num_cond_blocks = self.n_loras
|
303 |
+
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
|
304 |
+
mask[ :scaled_block_size-block_size, :] = 0 # First block_size row
|
305 |
+
for i in range(num_cond_blocks):
|
306 |
+
start = i * scaled_cond_size + scaled_block_size-block_size
|
307 |
+
end = (i + 1) * scaled_cond_size + scaled_block_size-block_size
|
308 |
+
mask[start:end, start:end] = 0 # Diagonal blocks
|
309 |
+
mask = mask * -1e20
|
310 |
+
mask = mask.to(query.dtype)
|
311 |
+
|
312 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
|
313 |
+
|
314 |
+
else:
|
315 |
+
query = attn.to_q(hidden_states)
|
316 |
+
key = attn.to_k(hidden_states)
|
317 |
+
value = attn.to_v(hidden_states)
|
318 |
+
|
319 |
+
inner_dim = query.shape[-1]
|
320 |
+
head_dim = inner_dim // attn.heads
|
321 |
+
|
322 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
323 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
324 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
325 |
+
|
326 |
+
zero_pad = torch.zeros_like(self.bank_kv[0], dtype=query.dtype, device=query.device)
|
327 |
+
|
328 |
+
key = torch.concat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2)
|
329 |
+
value = torch.concat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2)
|
330 |
+
|
331 |
+
if attn.norm_q is not None:
|
332 |
+
query = attn.norm_q(query)
|
333 |
+
if attn.norm_k is not None:
|
334 |
+
key = attn.norm_k(key)
|
335 |
+
|
336 |
+
query = torch.concat([query[:, :, :block_size, :], zero_pad], dim=-2)
|
337 |
+
|
338 |
+
# attention
|
339 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
340 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
341 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
342 |
+
|
343 |
+
if image_rotary_emb is not None:
|
344 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
345 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
346 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
347 |
+
|
348 |
+
query = query[:, :, :scaled_block_size, :]
|
349 |
+
|
350 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
|
351 |
+
|
352 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
353 |
+
hidden_states = hidden_states.to(query.dtype)
|
354 |
+
|
355 |
+
encoder_hidden_states, hidden_states = (
|
356 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
357 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
358 |
+
)
|
359 |
+
|
360 |
+
# Linear projection (with LoRA weight applied to each proj layer)
|
361 |
+
hidden_states = attn.to_out[0](hidden_states)
|
362 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
363 |
+
|
364 |
+
hidden_states = hidden_states[:, :block_size,:]
|
365 |
+
|
366 |
+
return hidden_states, encoder_hidden_states
|
src_inference/lora_helper.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers.models.attention_processor import FluxAttnProcessor2_0
|
2 |
+
from safetensors import safe_open
|
3 |
+
import re
|
4 |
+
import torch
|
5 |
+
from .layers_cache import MultiDoubleStreamBlockLoraProcessor, MultiSingleStreamBlockLoraProcessor
|
6 |
+
|
7 |
+
device = "cuda"
|
8 |
+
|
9 |
+
def load_safetensors(path):
|
10 |
+
tensors = {}
|
11 |
+
with safe_open(path, framework="pt", device="cpu") as f:
|
12 |
+
for key in f.keys():
|
13 |
+
tensors[key] = f.get_tensor(key)
|
14 |
+
return tensors
|
15 |
+
|
16 |
+
def get_lora_rank(checkpoint):
|
17 |
+
for k in checkpoint.keys():
|
18 |
+
if k.endswith(".down.weight"):
|
19 |
+
return checkpoint[k].shape[0]
|
20 |
+
|
21 |
+
def load_checkpoint(local_path):
|
22 |
+
if local_path is not None:
|
23 |
+
if '.safetensors' in local_path:
|
24 |
+
print(f"Loading .safetensors checkpoint from {local_path}")
|
25 |
+
checkpoint = load_safetensors(local_path)
|
26 |
+
else:
|
27 |
+
print(f"Loading checkpoint from {local_path}")
|
28 |
+
checkpoint = torch.load(local_path, map_location='cpu')
|
29 |
+
return checkpoint
|
30 |
+
|
31 |
+
def update_model_with_lora(checkpoint, lora_weights, transformer, cond_size):
|
32 |
+
number = len(lora_weights)
|
33 |
+
ranks = [get_lora_rank(checkpoint) for _ in range(number)]
|
34 |
+
lora_attn_procs = {}
|
35 |
+
double_blocks_idx = list(range(19))
|
36 |
+
single_blocks_idx = list(range(38))
|
37 |
+
for name, attn_processor in transformer.attn_processors.items():
|
38 |
+
match = re.search(r'\.(\d+)\.', name)
|
39 |
+
if match:
|
40 |
+
layer_index = int(match.group(1))
|
41 |
+
|
42 |
+
if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
|
43 |
+
|
44 |
+
lora_state_dicts = {}
|
45 |
+
for key, value in checkpoint.items():
|
46 |
+
# Match based on the layer index in the key (assuming the key contains layer index)
|
47 |
+
if re.search(r'\.(\d+)\.', key):
|
48 |
+
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
|
49 |
+
if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
|
50 |
+
lora_state_dicts[key] = value
|
51 |
+
|
52 |
+
lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
|
53 |
+
dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=lora_weights, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=number
|
54 |
+
)
|
55 |
+
|
56 |
+
# Load the weights from the checkpoint dictionary into the corresponding layers
|
57 |
+
for n in range(number):
|
58 |
+
lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
|
59 |
+
lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
|
60 |
+
lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
|
61 |
+
lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
|
62 |
+
lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
|
63 |
+
lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
|
64 |
+
lora_attn_procs[name].proj_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.down.weight', None)
|
65 |
+
lora_attn_procs[name].proj_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.up.weight', None)
|
66 |
+
lora_attn_procs[name].to(device)
|
67 |
+
|
68 |
+
elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
|
69 |
+
|
70 |
+
lora_state_dicts = {}
|
71 |
+
for key, value in checkpoint.items():
|
72 |
+
if re.search(r'\.(\d+)\.', key):
|
73 |
+
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
|
74 |
+
if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
|
75 |
+
lora_state_dicts[key] = value
|
76 |
+
|
77 |
+
lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
|
78 |
+
dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=lora_weights, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=number
|
79 |
+
)
|
80 |
+
for n in range(number):
|
81 |
+
lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
|
82 |
+
lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
|
83 |
+
lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
|
84 |
+
lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
|
85 |
+
lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
|
86 |
+
lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
|
87 |
+
lora_attn_procs[name].to(device)
|
88 |
+
else:
|
89 |
+
lora_attn_procs[name] = FluxAttnProcessor2_0()
|
90 |
+
|
91 |
+
transformer.set_attn_processor(lora_attn_procs)
|
92 |
+
|
93 |
+
|
94 |
+
def update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size):
|
95 |
+
ck_number = len(checkpoints)
|
96 |
+
cond_lora_number = [len(ls) for ls in lora_weights]
|
97 |
+
cond_number = sum(cond_lora_number)
|
98 |
+
ranks = [get_lora_rank(checkpoint) for checkpoint in checkpoints]
|
99 |
+
multi_lora_weight = []
|
100 |
+
for ls in lora_weights:
|
101 |
+
for n in ls:
|
102 |
+
multi_lora_weight.append(n)
|
103 |
+
|
104 |
+
lora_attn_procs = {}
|
105 |
+
double_blocks_idx = list(range(19))
|
106 |
+
single_blocks_idx = list(range(38))
|
107 |
+
for name, attn_processor in transformer.attn_processors.items():
|
108 |
+
match = re.search(r'\.(\d+)\.', name)
|
109 |
+
if match:
|
110 |
+
layer_index = int(match.group(1))
|
111 |
+
|
112 |
+
if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
|
113 |
+
lora_state_dicts = [{} for _ in range(ck_number)]
|
114 |
+
for idx, checkpoint in enumerate(checkpoints):
|
115 |
+
for key, value in checkpoint.items():
|
116 |
+
# Match based on the layer index in the key (assuming the key contains layer index)
|
117 |
+
if re.search(r'\.(\d+)\.', key):
|
118 |
+
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
|
119 |
+
if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
|
120 |
+
lora_state_dicts[idx][key] = value
|
121 |
+
|
122 |
+
lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
|
123 |
+
dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=multi_lora_weight, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=cond_number
|
124 |
+
)
|
125 |
+
|
126 |
+
# Load the weights from the checkpoint dictionary into the corresponding layers
|
127 |
+
num = 0
|
128 |
+
for idx in range(ck_number):
|
129 |
+
for n in range(cond_lora_number[idx]):
|
130 |
+
lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
|
131 |
+
lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
|
132 |
+
lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
|
133 |
+
lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
|
134 |
+
lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
|
135 |
+
lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
|
136 |
+
lora_attn_procs[name].proj_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.down.weight', None)
|
137 |
+
lora_attn_procs[name].proj_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.up.weight', None)
|
138 |
+
lora_attn_procs[name].to(device)
|
139 |
+
num += 1
|
140 |
+
|
141 |
+
elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
|
142 |
+
|
143 |
+
lora_state_dicts = [{} for _ in range(ck_number)]
|
144 |
+
for idx, checkpoint in enumerate(checkpoints):
|
145 |
+
for key, value in checkpoint.items():
|
146 |
+
# Match based on the layer index in the key (assuming the key contains layer index)
|
147 |
+
if re.search(r'\.(\d+)\.', key):
|
148 |
+
checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
|
149 |
+
if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
|
150 |
+
lora_state_dicts[idx][key] = value
|
151 |
+
|
152 |
+
lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
|
153 |
+
dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=multi_lora_weight, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=cond_number
|
154 |
+
)
|
155 |
+
# Load the weights from the checkpoint dictionary into the corresponding layers
|
156 |
+
num = 0
|
157 |
+
for idx in range(ck_number):
|
158 |
+
for n in range(cond_lora_number[idx]):
|
159 |
+
lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
|
160 |
+
lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
|
161 |
+
lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
|
162 |
+
lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
|
163 |
+
lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
|
164 |
+
lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
|
165 |
+
lora_attn_procs[name].to(device)
|
166 |
+
num += 1
|
167 |
+
|
168 |
+
else:
|
169 |
+
lora_attn_procs[name] = FluxAttnProcessor2_0()
|
170 |
+
|
171 |
+
transformer.set_attn_processor(lora_attn_procs)
|
172 |
+
|
173 |
+
|
174 |
+
def set_single_lora(transformer, local_path, lora_weights=[], cond_size=512):
|
175 |
+
checkpoint = load_checkpoint(local_path)
|
176 |
+
update_model_with_lora(checkpoint, lora_weights, transformer, cond_size)
|
177 |
+
|
178 |
+
def set_multi_lora(transformer, local_paths, lora_weights=[[]], cond_size=512):
|
179 |
+
checkpoints = [load_checkpoint(local_path) for local_path in local_paths]
|
180 |
+
update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size)
|
181 |
+
|
182 |
+
def unset_lora(transformer):
|
183 |
+
lora_attn_procs = {}
|
184 |
+
for name, attn_processor in transformer.attn_processors.items():
|
185 |
+
lora_attn_procs[name] = FluxAttnProcessor2_0()
|
186 |
+
transformer.set_attn_processor(lora_attn_procs)
|
187 |
+
|
188 |
+
|
189 |
+
'''
|
190 |
+
unset_lora(pipe.transformer)
|
191 |
+
lora_path = "./lora.safetensors"
|
192 |
+
lora_weights = [1, 1]
|
193 |
+
set_lora(pipe.transformer, local_path=lora_path, lora_weights=lora_weights, cond_size=512)
|
194 |
+
'''
|
src_inference/pipeline.py
ADDED
@@ -0,0 +1,746 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
7 |
+
|
8 |
+
from diffusers.image_processor import (VaeImageProcessor)
|
9 |
+
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
|
10 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
11 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
12 |
+
from diffusers.utils import (
|
13 |
+
USE_PEFT_BACKEND,
|
14 |
+
is_torch_xla_available,
|
15 |
+
logging,
|
16 |
+
scale_lora_layers,
|
17 |
+
unscale_lora_layers,
|
18 |
+
)
|
19 |
+
from diffusers.utils.torch_utils import randn_tensor
|
20 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
21 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
22 |
+
from torchvision.transforms.functional import pad
|
23 |
+
from diffusers import FluxTransformer2DModel
|
24 |
+
|
25 |
+
if is_torch_xla_available():
|
26 |
+
import torch_xla.core.xla_model as xm
|
27 |
+
|
28 |
+
XLA_AVAILABLE = True
|
29 |
+
else:
|
30 |
+
XLA_AVAILABLE = False
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
33 |
+
|
34 |
+
def calculate_shift(
|
35 |
+
image_seq_len,
|
36 |
+
base_seq_len: int = 256,
|
37 |
+
max_seq_len: int = 4096,
|
38 |
+
base_shift: float = 0.5,
|
39 |
+
max_shift: float = 1.16,
|
40 |
+
):
|
41 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
42 |
+
b = base_shift - m * base_seq_len
|
43 |
+
mu = image_seq_len * m + b
|
44 |
+
return mu
|
45 |
+
|
46 |
+
def prepare_latent_image_ids_(height, width, device, dtype):
|
47 |
+
latent_image_ids = torch.zeros(height//2, width//2, 3, device=device, dtype=dtype)
|
48 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height//2, device=device)[:, None] # y
|
49 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width//2, device=device)[None, :] # x
|
50 |
+
return latent_image_ids
|
51 |
+
|
52 |
+
def prepare_latent_subject_ids(height, width, device, dtype):
|
53 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3, device=device, dtype=dtype)
|
54 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2, device=device)[:, None]
|
55 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2, device=device)[None, :]
|
56 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
57 |
+
latent_image_ids = latent_image_ids.reshape(
|
58 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
59 |
+
)
|
60 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
61 |
+
|
62 |
+
def resize_position_encoding(batch_size, original_height, original_width, target_height, target_width, device, dtype):
|
63 |
+
latent_image_ids = prepare_latent_image_ids_(original_height, original_width, device, dtype)
|
64 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
65 |
+
latent_image_ids = latent_image_ids.reshape(
|
66 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
67 |
+
)
|
68 |
+
|
69 |
+
scale_h = original_height / target_height
|
70 |
+
scale_w = original_width / target_width
|
71 |
+
latent_image_ids_resized = torch.zeros(target_height//2, target_width//2, 3, device=device, dtype=dtype)
|
72 |
+
latent_image_ids_resized[..., 1] = latent_image_ids_resized[..., 1] + torch.arange(target_height//2, device=device)[:, None] * scale_h
|
73 |
+
latent_image_ids_resized[..., 2] = latent_image_ids_resized[..., 2] + torch.arange(target_width//2, device=device)[None, :] * scale_w
|
74 |
+
|
75 |
+
cond_latent_image_id_height, cond_latent_image_id_width, cond_latent_image_id_channels = latent_image_ids_resized.shape
|
76 |
+
cond_latent_image_ids = latent_image_ids_resized.reshape(
|
77 |
+
cond_latent_image_id_height * cond_latent_image_id_width, cond_latent_image_id_channels
|
78 |
+
)
|
79 |
+
return latent_image_ids, cond_latent_image_ids
|
80 |
+
|
81 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
82 |
+
def retrieve_latents(
|
83 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
84 |
+
):
|
85 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
86 |
+
return encoder_output.latent_dist.sample(generator)
|
87 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
88 |
+
return encoder_output.latent_dist.mode()
|
89 |
+
elif hasattr(encoder_output, "latents"):
|
90 |
+
return encoder_output.latents
|
91 |
+
else:
|
92 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
93 |
+
|
94 |
+
|
95 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
96 |
+
def retrieve_timesteps(
|
97 |
+
scheduler,
|
98 |
+
num_inference_steps: Optional[int] = None,
|
99 |
+
device: Optional[Union[str, torch.device]] = None,
|
100 |
+
timesteps: Optional[List[int]] = None,
|
101 |
+
sigmas: Optional[List[float]] = None,
|
102 |
+
**kwargs,
|
103 |
+
):
|
104 |
+
if timesteps is not None and sigmas is not None:
|
105 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
106 |
+
if timesteps is not None:
|
107 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
108 |
+
if not accepts_timesteps:
|
109 |
+
raise ValueError(
|
110 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
111 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
112 |
+
)
|
113 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
114 |
+
timesteps = scheduler.timesteps
|
115 |
+
num_inference_steps = len(timesteps)
|
116 |
+
elif sigmas is not None:
|
117 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
118 |
+
if not accept_sigmas:
|
119 |
+
raise ValueError(
|
120 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
121 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
122 |
+
)
|
123 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
124 |
+
timesteps = scheduler.timesteps
|
125 |
+
num_inference_steps = len(timesteps)
|
126 |
+
else:
|
127 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
128 |
+
timesteps = scheduler.timesteps
|
129 |
+
return timesteps, num_inference_steps
|
130 |
+
|
131 |
+
|
132 |
+
class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
136 |
+
vae: AutoencoderKL,
|
137 |
+
text_encoder: CLIPTextModel,
|
138 |
+
tokenizer: CLIPTokenizer,
|
139 |
+
text_encoder_2: T5EncoderModel,
|
140 |
+
tokenizer_2: T5TokenizerFast,
|
141 |
+
transformer: FluxTransformer2DModel,
|
142 |
+
):
|
143 |
+
super().__init__()
|
144 |
+
|
145 |
+
self.register_modules(
|
146 |
+
vae=vae,
|
147 |
+
text_encoder=text_encoder,
|
148 |
+
text_encoder_2=text_encoder_2,
|
149 |
+
tokenizer=tokenizer,
|
150 |
+
tokenizer_2=tokenizer_2,
|
151 |
+
transformer=transformer,
|
152 |
+
scheduler=scheduler,
|
153 |
+
)
|
154 |
+
self.vae_scale_factor = (
|
155 |
+
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
|
156 |
+
)
|
157 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
158 |
+
self.tokenizer_max_length = (
|
159 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
160 |
+
)
|
161 |
+
self.default_sample_size = 64
|
162 |
+
|
163 |
+
def _get_t5_prompt_embeds(
|
164 |
+
self,
|
165 |
+
prompt: Union[str, List[str]] = None,
|
166 |
+
num_images_per_prompt: int = 1,
|
167 |
+
max_sequence_length: int = 512,
|
168 |
+
device: Optional[torch.device] = None,
|
169 |
+
dtype: Optional[torch.dtype] = None,
|
170 |
+
):
|
171 |
+
device = device or self._execution_device
|
172 |
+
dtype = dtype or self.text_encoder.dtype
|
173 |
+
|
174 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
175 |
+
batch_size = len(prompt)
|
176 |
+
|
177 |
+
text_inputs = self.tokenizer_2(
|
178 |
+
prompt,
|
179 |
+
padding="max_length",
|
180 |
+
max_length=max_sequence_length,
|
181 |
+
truncation=True,
|
182 |
+
return_length=False,
|
183 |
+
return_overflowing_tokens=False,
|
184 |
+
return_tensors="pt",
|
185 |
+
)
|
186 |
+
text_input_ids = text_inputs.input_ids
|
187 |
+
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
188 |
+
|
189 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
190 |
+
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1: -1])
|
191 |
+
logger.warning(
|
192 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
193 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
194 |
+
)
|
195 |
+
|
196 |
+
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
197 |
+
|
198 |
+
dtype = self.text_encoder_2.dtype
|
199 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
200 |
+
|
201 |
+
_, seq_len, _ = prompt_embeds.shape
|
202 |
+
|
203 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
204 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
205 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
206 |
+
|
207 |
+
return prompt_embeds
|
208 |
+
|
209 |
+
def _get_clip_prompt_embeds(
|
210 |
+
self,
|
211 |
+
prompt: Union[str, List[str]],
|
212 |
+
num_images_per_prompt: int = 1,
|
213 |
+
device: Optional[torch.device] = None,
|
214 |
+
):
|
215 |
+
device = device or self._execution_device
|
216 |
+
|
217 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
218 |
+
batch_size = len(prompt)
|
219 |
+
|
220 |
+
text_inputs = self.tokenizer(
|
221 |
+
prompt,
|
222 |
+
padding="max_length",
|
223 |
+
max_length=self.tokenizer_max_length,
|
224 |
+
truncation=True,
|
225 |
+
return_overflowing_tokens=False,
|
226 |
+
return_length=False,
|
227 |
+
return_tensors="pt",
|
228 |
+
)
|
229 |
+
|
230 |
+
text_input_ids = text_inputs.input_ids
|
231 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
232 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
233 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1: -1])
|
234 |
+
logger.warning(
|
235 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
236 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
237 |
+
)
|
238 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
239 |
+
|
240 |
+
# Use pooled output of CLIPTextModel
|
241 |
+
prompt_embeds = prompt_embeds.pooler_output
|
242 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
243 |
+
|
244 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
245 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
246 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
247 |
+
|
248 |
+
return prompt_embeds
|
249 |
+
|
250 |
+
def encode_prompt(
|
251 |
+
self,
|
252 |
+
prompt: Union[str, List[str]],
|
253 |
+
prompt_2: Union[str, List[str]],
|
254 |
+
device: Optional[torch.device] = None,
|
255 |
+
num_images_per_prompt: int = 1,
|
256 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
257 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
258 |
+
max_sequence_length: int = 512,
|
259 |
+
lora_scale: Optional[float] = None,
|
260 |
+
):
|
261 |
+
device = device or self._execution_device
|
262 |
+
|
263 |
+
# set lora scale so that monkey patched LoRA
|
264 |
+
# function of text encoder can correctly access it
|
265 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
266 |
+
self._lora_scale = lora_scale
|
267 |
+
|
268 |
+
# dynamically adjust the LoRA scale
|
269 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
270 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
271 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
272 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
273 |
+
|
274 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
275 |
+
|
276 |
+
if prompt_embeds is None:
|
277 |
+
prompt_2 = prompt_2 or prompt
|
278 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
279 |
+
|
280 |
+
# We only use the pooled prompt output from the CLIPTextModel
|
281 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
282 |
+
prompt=prompt,
|
283 |
+
device=device,
|
284 |
+
num_images_per_prompt=num_images_per_prompt,
|
285 |
+
)
|
286 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
287 |
+
prompt=prompt_2,
|
288 |
+
num_images_per_prompt=num_images_per_prompt,
|
289 |
+
max_sequence_length=max_sequence_length,
|
290 |
+
device=device,
|
291 |
+
)
|
292 |
+
|
293 |
+
if self.text_encoder is not None:
|
294 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
295 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
296 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
297 |
+
|
298 |
+
if self.text_encoder_2 is not None:
|
299 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
300 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
301 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
302 |
+
|
303 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
304 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
305 |
+
|
306 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
307 |
+
|
308 |
+
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
|
309 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
310 |
+
if isinstance(generator, list):
|
311 |
+
image_latents = [
|
312 |
+
retrieve_latents(self.vae.encode(image[i: i + 1]), generator=generator[i])
|
313 |
+
for i in range(image.shape[0])
|
314 |
+
]
|
315 |
+
image_latents = torch.cat(image_latents, dim=0)
|
316 |
+
else:
|
317 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
318 |
+
|
319 |
+
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
320 |
+
|
321 |
+
return image_latents
|
322 |
+
|
323 |
+
def check_inputs(
|
324 |
+
self,
|
325 |
+
prompt,
|
326 |
+
prompt_2,
|
327 |
+
height,
|
328 |
+
width,
|
329 |
+
prompt_embeds=None,
|
330 |
+
pooled_prompt_embeds=None,
|
331 |
+
callback_on_step_end_tensor_inputs=None,
|
332 |
+
max_sequence_length=None,
|
333 |
+
):
|
334 |
+
if height % 8 != 0 or width % 8 != 0:
|
335 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
336 |
+
|
337 |
+
if prompt is not None and prompt_embeds is not None:
|
338 |
+
raise ValueError(
|
339 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
340 |
+
" only forward one of the two."
|
341 |
+
)
|
342 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
343 |
+
raise ValueError(
|
344 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
345 |
+
" only forward one of the two."
|
346 |
+
)
|
347 |
+
elif prompt is None and prompt_embeds is None:
|
348 |
+
raise ValueError(
|
349 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
350 |
+
)
|
351 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
352 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
353 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
354 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
355 |
+
|
356 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
357 |
+
raise ValueError(
|
358 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
359 |
+
)
|
360 |
+
|
361 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
362 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
363 |
+
|
364 |
+
@staticmethod
|
365 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
366 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
367 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
368 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
369 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
370 |
+
latent_image_ids = latent_image_ids.reshape(
|
371 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
372 |
+
)
|
373 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
374 |
+
|
375 |
+
@staticmethod
|
376 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
377 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
378 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
379 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
380 |
+
return latents
|
381 |
+
|
382 |
+
@staticmethod
|
383 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
384 |
+
batch_size, num_patches, channels = latents.shape
|
385 |
+
|
386 |
+
height = height // vae_scale_factor
|
387 |
+
width = width // vae_scale_factor
|
388 |
+
|
389 |
+
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
390 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
391 |
+
|
392 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
|
393 |
+
|
394 |
+
return latents
|
395 |
+
|
396 |
+
def enable_vae_slicing(self):
|
397 |
+
r"""
|
398 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
399 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
400 |
+
"""
|
401 |
+
self.vae.enable_slicing()
|
402 |
+
|
403 |
+
def disable_vae_slicing(self):
|
404 |
+
r"""
|
405 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
406 |
+
computing decoding in one step.
|
407 |
+
"""
|
408 |
+
self.vae.disable_slicing()
|
409 |
+
|
410 |
+
def enable_vae_tiling(self):
|
411 |
+
r"""
|
412 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
413 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
414 |
+
processing larger images.
|
415 |
+
"""
|
416 |
+
self.vae.enable_tiling()
|
417 |
+
|
418 |
+
def disable_vae_tiling(self):
|
419 |
+
r"""
|
420 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
421 |
+
computing decoding in one step.
|
422 |
+
"""
|
423 |
+
self.vae.disable_tiling()
|
424 |
+
|
425 |
+
def prepare_latents(
|
426 |
+
self,
|
427 |
+
batch_size,
|
428 |
+
num_channels_latents,
|
429 |
+
height,
|
430 |
+
width,
|
431 |
+
dtype,
|
432 |
+
device,
|
433 |
+
generator,
|
434 |
+
subject_image,
|
435 |
+
condition_image,
|
436 |
+
latents=None,
|
437 |
+
cond_number=1,
|
438 |
+
sub_number=1
|
439 |
+
):
|
440 |
+
height_cond = 2 * (self.cond_size // self.vae_scale_factor)
|
441 |
+
width_cond = 2 * (self.cond_size // self.vae_scale_factor)
|
442 |
+
height = 2 * (int(height) // self.vae_scale_factor)
|
443 |
+
width = 2 * (int(width) // self.vae_scale_factor)
|
444 |
+
|
445 |
+
shape = (batch_size, num_channels_latents, height, width) # 1 16 106 80
|
446 |
+
noise_latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
447 |
+
noise_latents = self._pack_latents(noise_latents, batch_size, num_channels_latents, height, width)
|
448 |
+
noise_latent_image_ids, cond_latent_image_ids = resize_position_encoding(
|
449 |
+
batch_size,
|
450 |
+
height,
|
451 |
+
width,
|
452 |
+
height_cond,
|
453 |
+
width_cond,
|
454 |
+
device,
|
455 |
+
dtype,
|
456 |
+
)
|
457 |
+
|
458 |
+
latents_to_concat = []
|
459 |
+
latents_ids_to_concat = [noise_latent_image_ids]
|
460 |
+
|
461 |
+
# subject
|
462 |
+
if subject_image is not None:
|
463 |
+
shape_subject = (batch_size, num_channels_latents, height_cond*sub_number, width_cond)
|
464 |
+
subject_image = subject_image.to(device=device, dtype=dtype)
|
465 |
+
subject_image_latents = self._encode_vae_image(image=subject_image, generator=generator)
|
466 |
+
subject_latents = self._pack_latents(subject_image_latents, batch_size, num_channels_latents, height_cond*sub_number, width_cond)
|
467 |
+
mask2 = torch.zeros(shape_subject, device=device, dtype=dtype)
|
468 |
+
mask2 = self._pack_latents(mask2, batch_size, num_channels_latents, height_cond*sub_number, width_cond)
|
469 |
+
latent_subject_ids = prepare_latent_subject_ids(height_cond, width_cond, device, dtype)
|
470 |
+
latent_subject_ids[:, 1] += 64 # fixed offset
|
471 |
+
subject_latent_image_ids = torch.concat([latent_subject_ids for _ in range(sub_number)], dim=-2)
|
472 |
+
latents_to_concat.append(subject_latents)
|
473 |
+
latents_ids_to_concat.append(subject_latent_image_ids)
|
474 |
+
|
475 |
+
# spatial
|
476 |
+
if condition_image is not None:
|
477 |
+
shape_cond = (batch_size, num_channels_latents, height_cond*cond_number, width_cond)
|
478 |
+
condition_image = condition_image.to(device=device, dtype=dtype)
|
479 |
+
image_latents = self._encode_vae_image(image=condition_image, generator=generator)
|
480 |
+
cond_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height_cond*cond_number, width_cond)
|
481 |
+
mask3 = torch.zeros(shape_cond, device=device, dtype=dtype)
|
482 |
+
mask3 = self._pack_latents(mask3, batch_size, num_channels_latents, height_cond*cond_number, width_cond)
|
483 |
+
cond_latent_image_ids = cond_latent_image_ids
|
484 |
+
cond_latent_image_ids = torch.concat([cond_latent_image_ids for _ in range(cond_number)], dim=-2)
|
485 |
+
latents_ids_to_concat.append(cond_latent_image_ids)
|
486 |
+
latents_to_concat.append(cond_latents)
|
487 |
+
|
488 |
+
cond_latents = torch.concat(latents_to_concat, dim=-2)
|
489 |
+
latent_image_ids = torch.concat(latents_ids_to_concat, dim=-2)
|
490 |
+
return cond_latents, latent_image_ids, noise_latents
|
491 |
+
|
492 |
+
@property
|
493 |
+
def guidance_scale(self):
|
494 |
+
return self._guidance_scale
|
495 |
+
|
496 |
+
@property
|
497 |
+
def joint_attention_kwargs(self):
|
498 |
+
return self._joint_attention_kwargs
|
499 |
+
|
500 |
+
@property
|
501 |
+
def num_timesteps(self):
|
502 |
+
return self._num_timesteps
|
503 |
+
|
504 |
+
@property
|
505 |
+
def interrupt(self):
|
506 |
+
return self._interrupt
|
507 |
+
|
508 |
+
@torch.no_grad()
|
509 |
+
def __call__(
|
510 |
+
self,
|
511 |
+
prompt: Union[str, List[str]] = None,
|
512 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
513 |
+
height: Optional[int] = None,
|
514 |
+
width: Optional[int] = None,
|
515 |
+
num_inference_steps: int = 28,
|
516 |
+
timesteps: List[int] = None,
|
517 |
+
guidance_scale: float = 3.5,
|
518 |
+
num_images_per_prompt: Optional[int] = 1,
|
519 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
520 |
+
latents: Optional[torch.FloatTensor] = None,
|
521 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
522 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
523 |
+
output_type: Optional[str] = "pil",
|
524 |
+
return_dict: bool = True,
|
525 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
526 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
527 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
528 |
+
max_sequence_length: int = 512,
|
529 |
+
spatial_images=[],
|
530 |
+
subject_images=[],
|
531 |
+
cond_size=512,
|
532 |
+
):
|
533 |
+
|
534 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
535 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
536 |
+
self.cond_size = cond_size
|
537 |
+
|
538 |
+
# 1. Check inputs. Raise error if not correct
|
539 |
+
self.check_inputs(
|
540 |
+
prompt,
|
541 |
+
prompt_2,
|
542 |
+
height,
|
543 |
+
width,
|
544 |
+
prompt_embeds=prompt_embeds,
|
545 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
546 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
547 |
+
max_sequence_length=max_sequence_length,
|
548 |
+
)
|
549 |
+
|
550 |
+
self._guidance_scale = guidance_scale
|
551 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
552 |
+
self._interrupt = False
|
553 |
+
|
554 |
+
cond_number = len(spatial_images)
|
555 |
+
sub_number = len(subject_images)
|
556 |
+
|
557 |
+
if sub_number > 0:
|
558 |
+
subject_image_ls = []
|
559 |
+
for subject_image in subject_images:
|
560 |
+
w, h = subject_image.size[:2]
|
561 |
+
scale = self.cond_size / max(h, w)
|
562 |
+
new_h, new_w = int(h * scale), int(w * scale)
|
563 |
+
subject_image = self.image_processor.preprocess(subject_image, height=new_h, width=new_w)
|
564 |
+
subject_image = subject_image.to(dtype=torch.float32)
|
565 |
+
pad_h = cond_size - subject_image.shape[-2]
|
566 |
+
pad_w = cond_size - subject_image.shape[-1]
|
567 |
+
subject_image = pad(
|
568 |
+
subject_image,
|
569 |
+
padding=(int(pad_w / 2), int(pad_h / 2), int(pad_w / 2), int(pad_h / 2)),
|
570 |
+
fill=0
|
571 |
+
)
|
572 |
+
subject_image_ls.append(subject_image)
|
573 |
+
subject_image = torch.concat(subject_image_ls, dim=-2)
|
574 |
+
else:
|
575 |
+
subject_image = None
|
576 |
+
|
577 |
+
if cond_number > 0:
|
578 |
+
condition_image_ls = []
|
579 |
+
for img in spatial_images:
|
580 |
+
print(img)
|
581 |
+
condition_image = self.image_processor.preprocess(img, height=self.cond_size, width=self.cond_size)
|
582 |
+
condition_image = condition_image.to(dtype=torch.float32)
|
583 |
+
condition_image_ls.append(condition_image)
|
584 |
+
condition_image = torch.concat(condition_image_ls, dim=-2)
|
585 |
+
else:
|
586 |
+
condition_image = None
|
587 |
+
|
588 |
+
# 2. Define call parameters
|
589 |
+
if prompt is not None and isinstance(prompt, str):
|
590 |
+
batch_size = 1
|
591 |
+
elif prompt is not None and isinstance(prompt, list):
|
592 |
+
batch_size = len(prompt)
|
593 |
+
else:
|
594 |
+
batch_size = prompt_embeds.shape[0]
|
595 |
+
|
596 |
+
device = self._execution_device
|
597 |
+
|
598 |
+
lora_scale = (
|
599 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
600 |
+
)
|
601 |
+
(
|
602 |
+
prompt_embeds,
|
603 |
+
pooled_prompt_embeds,
|
604 |
+
text_ids,
|
605 |
+
) = self.encode_prompt(
|
606 |
+
prompt=prompt,
|
607 |
+
prompt_2=prompt_2,
|
608 |
+
prompt_embeds=prompt_embeds,
|
609 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
610 |
+
device=device,
|
611 |
+
num_images_per_prompt=num_images_per_prompt,
|
612 |
+
max_sequence_length=max_sequence_length,
|
613 |
+
lora_scale=lora_scale,
|
614 |
+
)
|
615 |
+
|
616 |
+
# 4. Prepare latent variables
|
617 |
+
num_channels_latents = self.transformer.config.in_channels // 4 # 16
|
618 |
+
cond_latents, latent_image_ids, noise_latents = self.prepare_latents(
|
619 |
+
batch_size * num_images_per_prompt,
|
620 |
+
num_channels_latents,
|
621 |
+
height,
|
622 |
+
width,
|
623 |
+
prompt_embeds.dtype,
|
624 |
+
device,
|
625 |
+
generator,
|
626 |
+
subject_image,
|
627 |
+
condition_image,
|
628 |
+
latents,
|
629 |
+
cond_number,
|
630 |
+
sub_number
|
631 |
+
)
|
632 |
+
latents = noise_latents
|
633 |
+
# 5. Prepare timesteps
|
634 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
635 |
+
image_seq_len = latents.shape[1]
|
636 |
+
mu = calculate_shift(
|
637 |
+
image_seq_len,
|
638 |
+
self.scheduler.config.base_image_seq_len,
|
639 |
+
self.scheduler.config.max_image_seq_len,
|
640 |
+
self.scheduler.config.base_shift,
|
641 |
+
self.scheduler.config.max_shift,
|
642 |
+
)
|
643 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
644 |
+
self.scheduler,
|
645 |
+
num_inference_steps,
|
646 |
+
device,
|
647 |
+
timesteps,
|
648 |
+
sigmas,
|
649 |
+
mu=mu,
|
650 |
+
)
|
651 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
652 |
+
self._num_timesteps = len(timesteps)
|
653 |
+
|
654 |
+
# handle guidance
|
655 |
+
if self.transformer.config.guidance_embeds:
|
656 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
657 |
+
guidance = guidance.expand(latents.shape[0])
|
658 |
+
else:
|
659 |
+
guidance = None
|
660 |
+
|
661 |
+
## Caching conditions
|
662 |
+
# clean the cache
|
663 |
+
try:
|
664 |
+
for name, attn_processor in self.transformer.attn_processors.items():
|
665 |
+
attn_processor.bank_kv.clear()
|
666 |
+
except:
|
667 |
+
pass
|
668 |
+
# cache with warmup latents
|
669 |
+
t = torch.tensor([timesteps[0]], device=device)
|
670 |
+
timestep = t.expand(cond_latents.shape[0]).to(latents.dtype)
|
671 |
+
warmup_image_ids = latent_image_ids[latents.shape[1]:, :]
|
672 |
+
_ = self.transformer(
|
673 |
+
hidden_states=cond_latents,
|
674 |
+
timestep=torch.ones_like(timestep) * 0,
|
675 |
+
guidance=guidance,
|
676 |
+
pooled_projections=pooled_prompt_embeds,
|
677 |
+
encoder_hidden_states=prompt_embeds,
|
678 |
+
txt_ids=text_ids,
|
679 |
+
img_ids=warmup_image_ids,
|
680 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
681 |
+
return_dict=False,
|
682 |
+
)[0]
|
683 |
+
|
684 |
+
del cond_latents, spatial_images, condition_image, condition_image_ls, img, _
|
685 |
+
torch.cuda.empty_cache()
|
686 |
+
|
687 |
+
# 6. Denoising loop
|
688 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
689 |
+
for i, t in enumerate(timesteps):
|
690 |
+
if self.interrupt:
|
691 |
+
continue
|
692 |
+
|
693 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
694 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
695 |
+
noise_pred = self.transformer(
|
696 |
+
hidden_states=latents,
|
697 |
+
timestep=timestep / 1000,
|
698 |
+
guidance=guidance,
|
699 |
+
pooled_projections=pooled_prompt_embeds,
|
700 |
+
encoder_hidden_states=prompt_embeds,
|
701 |
+
txt_ids=text_ids,
|
702 |
+
img_ids=latent_image_ids,
|
703 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
704 |
+
return_dict=False,
|
705 |
+
)[0]
|
706 |
+
|
707 |
+
# compute the previous noisy sample x_t -> x_t-1
|
708 |
+
latents_dtype = latents.dtype
|
709 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
710 |
+
|
711 |
+
if latents.dtype != latents_dtype:
|
712 |
+
if torch.backends.mps.is_available():
|
713 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
714 |
+
latents = latents.to(latents_dtype)
|
715 |
+
|
716 |
+
if callback_on_step_end is not None:
|
717 |
+
callback_kwargs = {}
|
718 |
+
for k in callback_on_step_end_tensor_inputs:
|
719 |
+
callback_kwargs[k] = locals()[k]
|
720 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
721 |
+
|
722 |
+
latents = callback_outputs.pop("latents", latents)
|
723 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
724 |
+
|
725 |
+
# call the callback, if provided
|
726 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
727 |
+
progress_bar.update()
|
728 |
+
|
729 |
+
if XLA_AVAILABLE:
|
730 |
+
xm.mark_step()
|
731 |
+
|
732 |
+
if output_type == "latent":
|
733 |
+
image = latents
|
734 |
+
else:
|
735 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
736 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
737 |
+
image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
|
738 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
739 |
+
|
740 |
+
# Offload all models
|
741 |
+
self.maybe_free_model_hooks()
|
742 |
+
|
743 |
+
if not return_dict:
|
744 |
+
return (image,)
|
745 |
+
|
746 |
+
return FluxPipelineOutput(images=image)
|
test_imgs/00.png
ADDED
![]() |
test_imgs/01.png
ADDED
![]() |
test_imgs/02.png
ADDED
![]() |
test_imgs/03.png
ADDED
![]() |
test_imgs/04.png
ADDED
![]() |