Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import List, Union | |
| import numpy as np | |
| from ..utils import ( | |
| add_end_docstrings, | |
| is_torch_available, | |
| is_vision_available, | |
| logging, | |
| requires_backends, | |
| ) | |
| from .base import PIPELINE_INIT_ARGS, Pipeline | |
| if is_vision_available(): | |
| from PIL import Image | |
| from ..image_utils import load_image | |
| if is_torch_available(): | |
| from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES | |
| logger = logging.get_logger(__name__) | |
| class ImageToImagePipeline(Pipeline): | |
| """ | |
| Image to Image pipeline using any `AutoModelForImageToImage`. This pipeline generates an image based on a previous | |
| image input. | |
| Example: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import pipeline | |
| >>> upscaler = pipeline("image-to-image", model="caidas/swin2SR-classical-sr-x2-64") | |
| >>> img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) | |
| >>> img = img.resize((64, 64)) | |
| >>> upscaled_img = upscaler(img) | |
| >>> img.size | |
| (64, 64) | |
| >>> upscaled_img.size | |
| (144, 144) | |
| ``` | |
| This image to image pipeline can currently be loaded from [`pipeline`] using the following task identifier: | |
| `"image-to-image"`. | |
| See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-to-image). | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| requires_backends(self, "vision") | |
| self.check_model_type(MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES) | |
| def _sanitize_parameters(self, **kwargs): | |
| preprocess_params = {} | |
| postprocess_params = {} | |
| forward_params = {} | |
| if "timeout" in kwargs: | |
| preprocess_params["timeout"] = kwargs["timeout"] | |
| if "head_mask" in kwargs: | |
| forward_params["head_mask"] = kwargs["head_mask"] | |
| return preprocess_params, forward_params, postprocess_params | |
| def __call__( | |
| self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs | |
| ) -> Union["Image.Image", List["Image.Image"]]: | |
| """ | |
| Transform the image(s) passed as inputs. | |
| Args: | |
| images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): | |
| The pipeline handles three types of images: | |
| - A string containing a http link pointing to an image | |
| - A string containing a local path to an image | |
| - An image loaded in PIL directly | |
| The pipeline accepts either a single image or a batch of images, which must then be passed as a string. | |
| Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL | |
| images. | |
| timeout (`float`, *optional*, defaults to None): | |
| The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and | |
| the call may block forever. | |
| Return: | |
| An image (Image.Image) or a list of images (List["Image.Image"]) containing result(s). If the input is a | |
| single image, the return will be also a single image, if the input is a list of several images, it will | |
| return a list of transformed images. | |
| """ | |
| return super().__call__(images, **kwargs) | |
| def _forward(self, model_inputs): | |
| model_outputs = self.model(**model_inputs) | |
| return model_outputs | |
| def preprocess(self, image, timeout=None): | |
| image = load_image(image, timeout=timeout) | |
| inputs = self.image_processor(images=[image], return_tensors="pt") | |
| return inputs | |
| def postprocess(self, model_outputs): | |
| images = [] | |
| if "reconstruction" in model_outputs.keys(): | |
| outputs = model_outputs.reconstruction | |
| for output in outputs: | |
| output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
| output = np.moveaxis(output, source=0, destination=-1) | |
| output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 | |
| images.append(Image.fromarray(output)) | |
| return images if len(images) > 1 else images[0] | |