Spaces:
Configuration error
Configuration error
Kunpeng Song
commited on
Commit
·
18976e3
1
Parent(s):
eefa462
fix zero
Browse files- .DS_Store +0 -0
- app.py +4 -7
- model_lib/moMA_generator.py +4 -7
- model_lib/modules.py +2 -5
- model_lib/utils.py +1 -1
.DS_Store
CHANGED
|
Binary files a/.DS_Store and b/.DS_Store differ
|
|
|
app.py
CHANGED
|
@@ -15,18 +15,15 @@ device = torch.device('cuda')
|
|
| 15 |
seed_everything(0)
|
| 16 |
args = parse_args()
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
model = MoMA_main_modal(args).to(device, dtype=torch.float16)
|
| 21 |
-
generated_image = model.generate_images(rgb, subject, prompt, strength=strength, seed=seed)
|
| 22 |
-
return generated_image
|
| 23 |
|
| 24 |
@spaces.GPU
|
| 25 |
def inference(rgb, subject, prompt, strength, seed):
|
| 26 |
seed = int(seed) if seed else 0
|
| 27 |
seed = seed if not seed == 0 else np.random.randint(0,1000)
|
| 28 |
-
|
| 29 |
-
return
|
| 30 |
|
| 31 |
gr.Interface(
|
| 32 |
inference,
|
|
|
|
| 15 |
seed_everything(0)
|
| 16 |
args = parse_args()
|
| 17 |
|
| 18 |
+
from model_lib.modules import MoMA_main_modal
|
| 19 |
+
model = MoMA_main_modal(args).to(device, dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
@spaces.GPU
|
| 22 |
def inference(rgb, subject, prompt, strength, seed):
|
| 23 |
seed = int(seed) if seed else 0
|
| 24 |
seed = seed if not seed == 0 else np.random.randint(0,1000)
|
| 25 |
+
generated_image = model.generate_images(rgb, subject, prompt, strength=strength, seed=seed)
|
| 26 |
+
return generated_image
|
| 27 |
|
| 28 |
gr.Interface(
|
| 29 |
inference,
|
model_lib/moMA_generator.py
CHANGED
|
@@ -1,6 +1,3 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
|
| 3 |
-
|
| 4 |
import torch
|
| 5 |
from model_lib.attention_processor import IPAttnProcessor, IPAttnProcessor_Self, get_mask_from_cross
|
| 6 |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
|
@@ -98,7 +95,7 @@ class MoMA_generator:
|
|
| 98 |
vae=vae,
|
| 99 |
feature_extractor=None,
|
| 100 |
safety_checker=None,
|
| 101 |
-
)
|
| 102 |
|
| 103 |
self.unet = self.pipe.unet
|
| 104 |
add_function(self.pipe)
|
|
@@ -112,7 +109,7 @@ class MoMA_generator:
|
|
| 112 |
cross_attention_dim=768,
|
| 113 |
clip_embeddings_dim=1024,
|
| 114 |
clip_extra_context_tokens=4,
|
| 115 |
-
)
|
| 116 |
return image_proj_model
|
| 117 |
|
| 118 |
def set_ip_adapter(self):
|
|
@@ -129,9 +126,9 @@ class MoMA_generator:
|
|
| 129 |
block_id = int(name[len("down_blocks.")])
|
| 130 |
hidden_size = unet.config.block_out_channels[block_id]
|
| 131 |
if cross_attention_dim is None:
|
| 132 |
-
attn_procs[name] = IPAttnProcessor_Self(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,scale=1.0,num_tokens=4)
|
| 133 |
else:
|
| 134 |
-
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,scale=1.0,num_tokens=4)
|
| 135 |
unet.set_attn_processor(attn_procs)
|
| 136 |
|
| 137 |
@torch.inference_mode()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from model_lib.attention_processor import IPAttnProcessor, IPAttnProcessor_Self, get_mask_from_cross
|
| 3 |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
|
|
|
| 95 |
vae=vae,
|
| 96 |
feature_extractor=None,
|
| 97 |
safety_checker=None,
|
| 98 |
+
).to(self.device)
|
| 99 |
|
| 100 |
self.unet = self.pipe.unet
|
| 101 |
add_function(self.pipe)
|
|
|
|
| 109 |
cross_attention_dim=768,
|
| 110 |
clip_embeddings_dim=1024,
|
| 111 |
clip_extra_context_tokens=4,
|
| 112 |
+
).to(self.device, dtype=torch.float16)
|
| 113 |
return image_proj_model
|
| 114 |
|
| 115 |
def set_ip_adapter(self):
|
|
|
|
| 126 |
block_id = int(name[len("down_blocks.")])
|
| 127 |
hidden_size = unet.config.block_out_channels[block_id]
|
| 128 |
if cross_attention_dim is None:
|
| 129 |
+
attn_procs[name] = IPAttnProcessor_Self(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,scale=1.0,num_tokens=4).to(self.device, dtype=torch.float16)
|
| 130 |
else:
|
| 131 |
+
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,scale=1.0,num_tokens=4).to(self.device, dtype=torch.float16)
|
| 132 |
unet.set_attn_processor(attn_procs)
|
| 133 |
|
| 134 |
@torch.inference_mode()
|
model_lib/modules.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
import torch.nn as nn
|
|
@@ -84,11 +82,11 @@ class MoMA_main_modal(nn.Module):
|
|
| 84 |
|
| 85 |
print('Loading MoMA: its Multi-modal LLM...')
|
| 86 |
model_name = get_model_name_from_path(args.model_path)
|
| 87 |
-
self.tokenizer_llava, self.model_llava, self.image_processor_llava, self.context_len_llava = load_pretrained_model(args.model_path, None, model_name, load_8bit=self.args.load_8bit, load_4bit=self.args.load_4bit)
|
| 88 |
|
| 89 |
add_function(self.model_llava)
|
| 90 |
|
| 91 |
-
self.mapping = LlamaMLP_mapping(4096,1024)
|
| 92 |
self.load_saved_components()
|
| 93 |
self.freeze_modules()
|
| 94 |
|
|
@@ -137,7 +135,6 @@ class MoMA_main_modal(nn.Module):
|
|
| 137 |
def reset(self):
|
| 138 |
self.moMA_generator.reset_all()
|
| 139 |
|
| 140 |
-
@torch.no_grad()
|
| 141 |
def generate_images(self, rgb_path, subject, prompt, strength=1.0, num=1, seed=0):
|
| 142 |
batch = Dataset_evaluate_MoMA(rgb_path, prompt, subject,self)
|
| 143 |
self.moMA_generator.set_selfAttn_strength(strength)
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
|
|
|
| 82 |
|
| 83 |
print('Loading MoMA: its Multi-modal LLM...')
|
| 84 |
model_name = get_model_name_from_path(args.model_path)
|
| 85 |
+
self.tokenizer_llava, self.model_llava, self.image_processor_llava, self.context_len_llava = load_pretrained_model(args.model_path, None, model_name, load_8bit=self.args.load_8bit, load_4bit=self.args.load_4bit, device=args.device)
|
| 86 |
|
| 87 |
add_function(self.model_llava)
|
| 88 |
|
| 89 |
+
self.mapping = LlamaMLP_mapping(4096,1024).to(self.device, dtype=torch.float16)
|
| 90 |
self.load_saved_components()
|
| 91 |
self.freeze_modules()
|
| 92 |
|
|
|
|
| 135 |
def reset(self):
|
| 136 |
self.moMA_generator.reset_all()
|
| 137 |
|
|
|
|
| 138 |
def generate_images(self, rgb_path, subject, prompt, strength=1.0, num=1, seed=0):
|
| 139 |
batch = Dataset_evaluate_MoMA(rgb_path, prompt, subject,self)
|
| 140 |
self.moMA_generator.set_selfAttn_strength(strength)
|
model_lib/utils.py
CHANGED
|
@@ -10,7 +10,7 @@ def parse_args():
|
|
| 10 |
parser.add_argument("--model_path",type=str,default="KunpengSong/MoMA_llava_7b",help="fine tuned llava (Multi-modal LLM decoder)")
|
| 11 |
args = parser.parse_known_args()[0]
|
| 12 |
args.device = torch.device("cuda", 0)
|
| 13 |
-
args.load_8bit, args.load_4bit = False,
|
| 14 |
return args
|
| 15 |
|
| 16 |
def show_PIL_image(tensor):
|
|
|
|
| 10 |
parser.add_argument("--model_path",type=str,default="KunpengSong/MoMA_llava_7b",help="fine tuned llava (Multi-modal LLM decoder)")
|
| 11 |
args = parser.parse_known_args()[0]
|
| 12 |
args.device = torch.device("cuda", 0)
|
| 13 |
+
args.load_8bit, args.load_4bit = False, True
|
| 14 |
return args
|
| 15 |
|
| 16 |
def show_PIL_image(tensor):
|