DMOSpeech2-demo / app.py
yl4579's picture
Update app.py
51a612e verified
raw
history blame
12.4 kB
import gradio as gr
import torch
import torchaudio
import numpy as np
import tempfile
import time
from pathlib import Path
from huggingface_hub import hf_hub_download
import os
import spaces
from transformers import pipeline
# Import the inference module
from infer import DMOInference
# Global variables
model_paths = {"student": None, "duration": None}
asr_pipe = None
model_downloaded = False
# Download models on startup (CPU)
def download_models():
"""Download models from HuggingFace Hub."""
global model_downloaded, model_paths
try:
print("Downloading models from HuggingFace...")
# Download student model
student_path = hf_hub_download(
repo_id="yl4579/DMOSpeech2",
filename="model_85000.pt",
cache_dir="./models"
)
# Download duration predictor
duration_path = hf_hub_download(
repo_id="yl4579/DMOSpeech2",
filename="model_1500.pt",
cache_dir="./models"
)
model_paths["student"] = student_path
model_paths["duration"] = duration_path
model_downloaded = True
print(f"✓ Models downloaded successfully")
return True
except Exception as e:
print(f"Error downloading models: {e}")
return False
# Initialize ASR pipeline on CPU
def initialize_asr_pipeline():
"""Initialize the ASR pipeline on startup."""
global asr_pipe
print("Initializing ASR pipeline...")
try:
asr_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float32,
device="cpu" # Always use CPU for ASR to save GPU memory
)
print("✓ ASR pipeline initialized successfully")
return True
except Exception as e:
print(f"Error initializing ASR pipeline: {e}")
return False
# Transcribe function
def transcribe(ref_audio, language=None):
"""Transcribe audio using the pre-loaded ASR pipeline."""
global asr_pipe
if asr_pipe is None:
return ""
try:
result = asr_pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe", "language": language} if language else {"task": "transcribe"},
return_timestamps=False,
)
return result["text"].strip()
except Exception as e:
print(f"Transcription error: {e}")
return ""
# Initialize on startup
print("Starting DMOSpeech 2...")
models_ready = download_models()
asr_ready = initialize_asr_pipeline()
status_message = f"Models: {'✅' if models_ready else '❌'} | ASR: {'✅' if asr_ready else '❌'}"
@spaces.GPU(duration=120)
def generate_speech_gpu(
prompt_audio,
prompt_text,
target_text,
mode,
temperature,
custom_teacher_steps,
custom_teacher_stopping_time,
custom_student_start_step,
verbose
):
"""Generate speech with GPU acceleration."""
if not model_downloaded:
return None, "❌ Models not downloaded! Please refresh the page.", "", "", prompt_text
if prompt_audio is None:
return None, "❌ Please upload a reference audio!", "", "", prompt_text
if not target_text:
return None, "❌ Please enter text to generate!", "", "", prompt_text
try:
# Initialize model on GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Initializing model on {device}...")
model = DMOInference(
student_checkpoint_path=model_paths["student"],
duration_predictor_path=model_paths["duration"],
device=device,
model_type="F5TTS_Base"
)
# Auto-transcribe if needed (this happens on CPU)
transcribed_text = prompt_text # Default to provided text
if not prompt_text.strip():
print("Auto-transcribing reference audio...")
transcribed_text = transcribe(prompt_audio)
print(f"Transcribed: {transcribed_text}")
start_time = time.time()
# Configure parameters based on mode
configs = {
"Student Only (4 steps)": {
"teacher_steps": 0,
"student_start_step": 0,
"teacher_stopping_time": 1.0
},
"Teacher-Guided (8 steps)": {
"teacher_steps": 16,
"teacher_stopping_time": 0.07,
"student_start_step": 1
},
"High Diversity (16 steps)": {
"teacher_steps": 24,
"teacher_stopping_time": 0.3,
"student_start_step": 2
},
"Custom": {
"teacher_steps": custom_teacher_steps,
"teacher_stopping_time": custom_teacher_stopping_time,
"student_start_step": custom_student_start_step
}
}
config = configs[mode]
# Generate speech
generated_audio = model.generate(
gen_text=target_text,
audio_path=prompt_audio,
prompt_text=transcribed_text if transcribed_text else None,
teacher_steps=config["teacher_steps"],
teacher_stopping_time=config["teacher_stopping_time"],
student_start_step=config["student_start_step"],
temperature=temperature,
verbose=verbose
)
end_time = time.time()
# Calculate metrics
processing_time = end_time - start_time
audio_duration = generated_audio.shape[-1] / 24000
rtf = processing_time / audio_duration
# Save audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
output_path = tmp_file.name
if isinstance(generated_audio, np.ndarray):
generated_audio = torch.from_numpy(generated_audio)
if generated_audio.dim() == 1:
generated_audio = generated_audio.unsqueeze(0)
torchaudio.save(output_path, generated_audio, 24000)
# Format output
metrics = f"""RTF: {rtf:.2f}x ({1/rtf:.2f}x faster)
Processing: {processing_time:.2f}s for {audio_duration:.2f}s audio
Device: {device.upper()}"""
info = f"Mode: {mode}"
if not prompt_text.strip():
info += f" | Auto-transcribed"
# Clean up GPU memory
del model
if device == "cuda":
torch.cuda.empty_cache()
# Return transcribed text to update the textbox
return output_path, "✅ Success!", metrics, info, transcribed_text
except Exception as e:
import traceback
print(traceback.format_exc())
return None, f"❌ Error: {str(e)}", "", "", prompt_text
# Create Gradio interface
with gr.Blocks(
title="DMOSpeech 2 - Zero-Shot TTS",
theme=gr.themes.Soft(),
css="""
.gradio-container { max-width: 1200px !important; }
"""
) as demo:
gr.Markdown(f"""
<div style="text-align: center;">
<h1>🎙️ DMOSpeech 2: Zero-Shot Text-to-Speech</h1>
<p>Generate natural speech in any voice with just a 3-10 second reference!</p>
<p><b>System Status:</b> {status_message}</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
# Inputs
prompt_audio = gr.Audio(
label="📎 Reference Audio (3-10 seconds)",
type="filepath",
sources=["upload", "microphone"]
)
prompt_text = gr.Textbox(
label="📝 Reference Text (leave empty for auto-transcription)",
placeholder="The text spoken in the reference audio...",
lines=2
)
target_text = gr.Textbox(
label="✍️ Text to Generate",
placeholder="Enter the text you want to synthesize...",
lines=4
)
mode = gr.Radio(
choices=[
"Student Only (4 steps)",
"Teacher-Guided (8 steps)",
"High Diversity (16 steps)",
"Custom"
],
value="Teacher-Guided (8 steps)",
label="🚀 Generation Mode",
info="Speed vs quality tradeoff"
)
# Advanced settings
with gr.Accordion("⚙️ Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Duration Temperature",
info="0 = consistent, >0 = varied rhythm"
)
with gr.Group(visible=False) as custom_group:
custom_teacher_steps = gr.Slider(0, 32, 16, 1, label="Teacher Steps")
custom_teacher_stopping_time = gr.Slider(0.0, 1.0, 0.07, 0.01, label="Stopping Time")
custom_student_start_step = gr.Slider(0, 4, 1, 1, label="Student Start Step")
verbose = gr.Checkbox(False, label="Verbose Output")
generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
with gr.Column(scale=1):
# Outputs
output_audio = gr.Audio(
label="🔊 Generated Speech",
type="filepath",
autoplay=True
)
status = gr.Textbox(label="Status", interactive=False)
metrics = gr.Textbox(label="Performance", interactive=False, lines=3)
info = gr.Textbox(label="Info", interactive=False)
# Guide
gr.Markdown("""
### 💡 Quick Guide
| Mode | Speed | Quality | Use Case |
|------|-------|---------|----------|
| Student Only | 20x realtime | Good | Real-time apps |
| Teacher-Guided | 10x realtime | Better | General use |
| High Diversity | 5x realtime | Best | Production |
**Tips:**
- Leave reference text empty for auto-transcription
- Auto-transcription only happens once - the text will be filled in
- Use temperature > 0 for more natural rhythm variation
- Custom mode lets you fine-tune all parameters
""")
# Examples
gr.Markdown("### 🎯 Example Texts")
gr.Markdown("""
<details>
<summary>English Example</summary>
**Reference:** "Some call me nature, others call me mother nature."
**Target:** "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring."
</details>
<details>
<summary>Chinese Example</summary>
**Reference:** "对,这就是我,万人敬仰的太乙真人。"
**Target:** "突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:'我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?'"
</details>
""")
# Event handlers
def toggle_custom(mode):
return gr.update(visible=(mode == "Custom"))
mode.change(toggle_custom, [mode], [custom_group])
generate_btn.click(
generate_speech_gpu,
inputs=[
prompt_audio,
prompt_text,
target_text,
mode,
temperature,
custom_teacher_steps,
custom_teacher_stopping_time,
custom_student_start_step,
verbose
],
outputs=[
output_audio,
status,
metrics,
info,
prompt_text # Update the prompt_text textbox with transcribed text
]
)
# Launch
if __name__ == "__main__":
demo.launch()