DMOSpeech2-demo / app.py
yl4579's picture
Update app.py
ce62445 verified
raw
history blame
12.8 kB
import gradio as gr
import torch
import torchaudio
import numpy as np
import tempfile
import time
from pathlib import Path
from huggingface_hub import hf_hub_download
import os
import spaces
from transformers import pipeline
# Import the inference module
from infer import DMOInference
# Global variables
model = None
asr_pipe = None
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize ASR pipeline
def initialize_asr_pipeline(device=device, dtype=None):
"""Initialize the ASR pipeline on startup."""
global asr_pipe
if dtype is None:
dtype = (
torch.float16
if "cuda" in device
and torch.cuda.is_available()
and torch.cuda.get_device_properties(device).major >= 7
and not torch.cuda.get_device_name().endswith("[ZLUDA]")
else torch.float32
)
print("Initializing ASR pipeline...")
try:
asr_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=dtype,
device="cpu" # Keep ASR on CPU to save GPU memory
)
print("ASR pipeline initialized successfully")
except Exception as e:
print(f"Error initializing ASR pipeline: {e}")
asr_pipe = None
# Transcribe function
def transcribe(ref_audio, language=None):
"""Transcribe audio using the pre-loaded ASR pipeline."""
global asr_pipe
if asr_pipe is None:
return "" # Return empty string if ASR is not available
try:
result = asr_pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe", "language": language} if language else {"task": "transcribe"},
return_timestamps=False,
)
return result["text"].strip()
except Exception as e:
print(f"Transcription error: {e}")
return ""
def download_models():
"""Download models from HuggingFace Hub."""
try:
print("Downloading models from HuggingFace...")
# Download student model
student_path = hf_hub_download(
repo_id="yl4579/DMOSpeech2",
filename="model_85000.pt",
cache_dir="./models"
)
# Download duration predictor
duration_path = hf_hub_download(
repo_id="yl4579/DMOSpeech2",
filename="model_1500.pt",
cache_dir="./models"
)
print(f"Student model: {student_path}")
print(f"Duration model: {duration_path}")
return student_path, duration_path
except Exception as e:
print(f"Error downloading models: {e}")
return None, None
def initialize_model():
"""Initialize the model on startup."""
global model
try:
# Download models
student_path, duration_path = download_models()
if not student_path or not duration_path:
return False, "Failed to download models from HuggingFace"
# Initialize model
model = DMOInference(
student_checkpoint_path=student_path,
duration_predictor_path=duration_path,
device=device,
model_type="F5TTS_Base"
)
return True, f"Model loaded successfully on {device.upper()}"
except Exception as e:
return False, f"Error initializing model: {str(e)}"
# Initialize models on startup
print("Initializing models...")
model_loaded, status_message = initialize_model()
initialize_asr_pipeline() # Initialize ASR pipeline
@spaces.GPU(duration=120) # Request GPU for up to 120 seconds
def generate_speech(
prompt_audio,
prompt_text,
target_text,
mode,
temperature,
custom_teacher_steps,
custom_teacher_stopping_time,
custom_student_start_step,
verbose
):
"""Generate speech with different configurations."""
if not model_loaded or model is None:
return None, "Model not loaded! Please refresh the page.", "", ""
if prompt_audio is None:
return None, "Please upload a reference audio!", "", ""
if not target_text:
return None, "Please enter text to generate!", "", ""
try:
# Auto-transcribe if prompt_text is empty
if not prompt_text and prompt_text != "":
print("Auto-transcribing reference audio...")
prompt_text = transcribe(prompt_audio)
print(f"Transcribed: {prompt_text}")
start_time = time.time()
# Configure parameters based on mode
if mode == "Student Only (4 steps)":
teacher_steps = 0
student_start_step = 0
teacher_stopping_time = 1.0
elif mode == "Teacher-Guided (8 steps)":
# Default configuration from the notebook
teacher_steps = 16
teacher_stopping_time = 0.07
student_start_step = 1
elif mode == "High Diversity (16 steps)":
teacher_steps = 24
teacher_stopping_time = 0.3
student_start_step = 2
else: # Custom
teacher_steps = custom_teacher_steps
teacher_stopping_time = custom_teacher_stopping_time
student_start_step = custom_student_start_step
# Generate speech
generated_audio = model.generate(
gen_text=target_text,
audio_path=prompt_audio,
prompt_text=prompt_text if prompt_text else None,
teacher_steps=teacher_steps,
teacher_stopping_time=teacher_stopping_time,
student_start_step=student_start_step,
temperature=temperature,
verbose=verbose
)
end_time = time.time()
# Calculate metrics
processing_time = end_time - start_time
audio_duration = generated_audio.shape[-1] / 24000
rtf = processing_time / audio_duration
# Save audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
output_path = tmp_file.name
if isinstance(generated_audio, np.ndarray):
generated_audio = torch.from_numpy(generated_audio)
if generated_audio.dim() == 1:
generated_audio = generated_audio.unsqueeze(0)
torchaudio.save(output_path, generated_audio, 24000)
# Format metrics
metrics = f"RTF: {rtf:.2f}x ({1/rtf:.2f}x speed) | Processing: {processing_time:.2f}s for {audio_duration:.2f}s audio"
return output_path, "Success!", metrics, f"Mode: {mode} | Transcribed: {prompt_text[:50]}..." if not prompt_text else f"Mode: {mode}"
except Exception as e:
return None, f"Error: {str(e)}", "", ""
# Create Gradio interface
with gr.Blocks(title="DMOSpeech 2 - Zero-Shot TTS", theme=gr.themes.Soft()) as demo:
gr.Markdown(f"""
# πŸŽ™οΈ DMOSpeech 2: Zero-Shot Text-to-Speech
Generate natural speech in any voice with just a short reference audio!
**Model Status:** {status_message} | **Device:** {device.upper()} | **ASR:** {"βœ… Ready" if asr_pipe else "❌ Not available"}
""")
with gr.Row():
with gr.Column(scale=1):
# Reference audio input
prompt_audio = gr.Audio(
label="πŸ“Ž Reference Audio",
type="filepath",
sources=["upload", "microphone"]
)
prompt_text = gr.Textbox(
label="πŸ“ Reference Text (leave empty for auto-transcription)",
placeholder="The text spoken in the reference audio...",
lines=2
)
target_text = gr.Textbox(
label="✍️ Text to Generate",
placeholder="Enter the text you want to synthesize...",
lines=4
)
# Generation mode
mode = gr.Radio(
choices=[
"Student Only (4 steps)",
"Teacher-Guided (8 steps)",
"High Diversity (16 steps)",
"Custom"
],
value="Teacher-Guided (8 steps)",
label="πŸš€ Generation Mode",
info="Choose speed vs quality/diversity tradeoff"
)
# Advanced settings (collapsible)
with gr.Accordion("βš™οΈ Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Duration Temperature",
info="0 = deterministic, >0 = more variation in speech rhythm"
)
with gr.Group(visible=False) as custom_settings:
gr.Markdown("### Custom Mode Settings")
custom_teacher_steps = gr.Slider(
minimum=0,
maximum=32,
value=16,
step=1,
label="Teacher Steps",
info="More steps = higher quality"
)
custom_teacher_stopping_time = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.07,
step=0.01,
label="Teacher Stopping Time",
info="When to switch to student"
)
custom_student_start_step = gr.Slider(
minimum=0,
maximum=4,
value=1,
step=1,
label="Student Start Step",
info="Which student step to start from"
)
verbose = gr.Checkbox(
value=False,
label="Verbose Output",
info="Show detailed generation steps"
)
generate_btn = gr.Button("🎡 Generate Speech", variant="primary", size="lg")
with gr.Column(scale=1):
# Output
output_audio = gr.Audio(
label="πŸ”Š Generated Speech",
type="filepath",
autoplay=True
)
status = gr.Textbox(
label="Status",
interactive=False
)
metrics = gr.Textbox(
label="Performance Metrics",
interactive=False
)
info = gr.Textbox(
label="Generation Info",
interactive=False
)
# Tips
gr.Markdown("""
### πŸ’‘ Quick Tips:
- **Auto-transcription**: Leave reference text empty to auto-transcribe
- **Student Only**: Fastest (4 steps), good quality
- **Teacher-Guided**: Best balance (8 steps), recommended
- **High Diversity**: More natural prosody (16 steps)
- **Custom Mode**: Fine-tune all parameters
### πŸ“Š Expected RTF (Real-Time Factor):
- Student Only: ~0.05x (20x faster than real-time)
- Teacher-Guided: ~0.10x (10x faster)
- High Diversity: ~0.20x (5x faster)
""")
# Event handler
generate_btn.click(
generate_speech,
inputs=[
prompt_audio,
prompt_text,
target_text,
mode,
temperature,
custom_teacher_steps,
custom_teacher_stopping_time,
custom_student_start_step,
verbose
],
outputs=[output_audio, status, metrics, info]
)
# Update visibility of custom settings based on mode
def update_custom_visibility(mode):
is_custom = (mode == "Custom")
return gr.update(visible=is_custom)
mode.change(
update_custom_visibility,
inputs=[mode],
outputs=[custom_settings]
)
# Launch the app
if __name__ == "__main__":
if not model_loaded:
print(f"Warning: Model failed to load - {status_message}")
if not asr_pipe:
print("Warning: ASR pipeline not available - auto-transcription disabled")
demo.launch()