Spaces:
Running
Running
File size: 14,205 Bytes
7f2690b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import collections
import csv
import logging
import os
import random
import math
import json
from glob import glob
from pathlib import Path
import numpy as np
import torch
import torchvision
logger = logging.getLogger(f'main.{__name__}')
class VGGSound(torch.utils.data.Dataset):
def __init__(self, split, specs_dir, transforms=None, splits_path='./data', meta_path='./data/vggsound.csv'):
super().__init__()
self.split = split
self.specs_dir = specs_dir
self.transforms = transforms
self.splits_path = splits_path
self.meta_path = meta_path
vggsound_meta = list(csv.reader(open(meta_path), quotechar='"'))
unique_classes = sorted(list(set(row[2] for row in vggsound_meta)))
self.label2target = {label: target for target, label in enumerate(unique_classes)}
self.target2label = {target: label for label, target in self.label2target.items()}
self.video2target = {row[0]: self.label2target[row[2]] for row in vggsound_meta}
split_clip_ids_path = os.path.join(splits_path, f'vggsound_{split}_partial.txt')
print('&&&&&&&&&&&&&&&&', split_clip_ids_path)
if not os.path.exists(split_clip_ids_path):
self.make_split_files()
clip_ids_with_timestamp = open(split_clip_ids_path).read().splitlines()
clip_paths = [os.path.join(specs_dir, v + '_mel.npy') for v in clip_ids_with_timestamp]
self.dataset = clip_paths
# self.dataset = clip_paths[:10000] # overfit one batch
# 'zyTX_1BXKDE_16000_26000'[:11] -> 'zyTX_1BXKDE'
vid_classes = [self.video2target[Path(path).stem[:11]] for path in self.dataset]
class2count = collections.Counter(vid_classes)
self.class_counts = torch.tensor([class2count[cls] for cls in range(len(class2count))])
# self.sample_weights = [len(self.dataset) / class2count[self.video2target[Path(path).stem[:11]]] for path in self.dataset]
def __getitem__(self, idx):
item = {}
spec_path = self.dataset[idx]
# 'zyTX_1BXKDE_16000_26000' -> 'zyTX_1BXKDE'
video_name = Path(spec_path).stem[:11]
item['input'] = np.load(spec_path)
item['input_path'] = spec_path
# if self.split in ['train', 'valid']:
item['target'] = self.video2target[video_name]
item['label'] = self.target2label[item['target']]
if self.transforms is not None:
item = self.transforms(item)
return item
def __len__(self):
return len(self.dataset)
def make_split_files(self):
random.seed(1337)
logger.info(f'The split files do not exist @ {self.splits_path}. Calculating the new ones.')
# The downloaded videos (some went missing on YouTube and no longer available)
available_vid_paths = sorted(glob(os.path.join(self.specs_dir, '*_mel.npy')))
logger.info(f'The number of clips available after download: {len(available_vid_paths)}')
# original (full) train and test sets
vggsound_meta = list(csv.reader(open(self.meta_path), quotechar='"'))
train_vids = {row[0] for row in vggsound_meta if row[3] == 'train'}
test_vids = {row[0] for row in vggsound_meta if row[3] == 'test'}
logger.info(f'The number of videos in vggsound train set: {len(train_vids)}')
logger.info(f'The number of videos in vggsound test set: {len(test_vids)}')
# class counts in test set. We would like to have the same distribution in valid
unique_classes = sorted(list(set(row[2] for row in vggsound_meta)))
label2target = {label: target for target, label in enumerate(unique_classes)}
video2target = {row[0]: label2target[row[2]] for row in vggsound_meta}
test_vid_classes = [video2target[vid] for vid in test_vids]
test_target2count = collections.Counter(test_vid_classes)
# now given the counts from test set, sample the same count for validation and the rest leave in train
train_vids_wo_valid, valid_vids = set(), set()
for target, label in enumerate(label2target.keys()):
class_train_vids = [vid for vid in train_vids if video2target[vid] == target]
random.shuffle(class_train_vids)
count = test_target2count[target]
valid_vids.update(class_train_vids[:count])
train_vids_wo_valid.update(class_train_vids[count:])
# make file with a list of available test videos (each video should contain timestamps as well)
train_i = valid_i = test_i = 0
with open(os.path.join(self.splits_path, 'vggsound_train.txt'), 'w') as train_file, \
open(os.path.join(self.splits_path, 'vggsound_valid.txt'), 'w') as valid_file, \
open(os.path.join(self.splits_path, 'vggsound_test.txt'), 'w') as test_file:
for path in available_vid_paths:
path = path.replace('_mel.npy', '')
vid_name = Path(path).name
# 'zyTX_1BXKDE_16000_26000'[:11] -> 'zyTX_1BXKDE'
if vid_name[:11] in train_vids_wo_valid:
train_file.write(vid_name + '\n')
train_i += 1
elif vid_name[:11] in valid_vids:
valid_file.write(vid_name + '\n')
valid_i += 1
elif vid_name[:11] in test_vids:
test_file.write(vid_name + '\n')
test_i += 1
else:
raise Exception(f'Clip {vid_name} is neither in train, valid nor test. Strange.')
logger.info(f'Put {train_i} clips to the train set and saved it to ./data/vggsound_train.txt')
logger.info(f'Put {valid_i} clips to the valid set and saved it to ./data/vggsound_valid.txt')
logger.info(f'Put {test_i} clips to the test set and saved it to ./data/vggsound_test.txt')
def get_GH_data_identifier(video_name, start_idx, split='_'):
if isinstance(start_idx, str):
return video_name + split + start_idx
elif isinstance(start_idx, int):
return video_name + split + str(start_idx)
else:
raise NotImplementedError
class GreatestHit(torch.utils.data.Dataset):
def __init__(self, split, spec_dir_path, spec_transform=None, L=2.0, action_only=False,
material_only=False, splits_path='/home/duyxxd/SpecVQGAN/data',
meta_path='/home/duyxxd/SpecVQGAN/data/info_r2plus1d_dim1024_15fps.json'):
super().__init__()
self.split = split
self.specs_dir = spec_dir_path
self.splits_path = splits_path
self.meta_path = meta_path
self.spec_transform = spec_transform
self.L = L
self.spec_take_first = int(math.ceil(860 * (L / 10.) / 32) * 32)
self.spec_take_first = 860 if self.spec_take_first > 860 else self.spec_take_first
self.spec_take_first = 173
greatesthit_meta = json.load(open(self.meta_path, 'r'))
self.video_idx2label = {
get_GH_data_identifier(greatesthit_meta['video_name'][i], greatesthit_meta['start_idx'][i]):
greatesthit_meta['hit_type'][i] for i in range(len(greatesthit_meta['video_name']))
}
self.available_video_hit = list(self.video_idx2label.keys())
self.video_idx2path = {
vh: os.path.join(self.specs_dir,
vh.replace('_', '_denoised_') + '_' + self.video_idx2label[vh].replace(' ', '_') +'_mel.npy')
for vh in self.available_video_hit
}
self.video_idx2idx = {
get_GH_data_identifier(greatesthit_meta['video_name'][i], greatesthit_meta['start_idx'][i]):
i for i in range(len(greatesthit_meta['video_name']))
}
split_clip_ids_path = os.path.join(splits_path, f'greatesthit_{split}_2.00_single_type_only.json')
if not os.path.exists(split_clip_ids_path):
raise NotImplementedError()
clip_video_hit = json.load(open(split_clip_ids_path, 'r'))
self.dataset = list(clip_video_hit.keys())
if action_only:
self.video_idx2label = {k: v.split(' ')[1] for k, v in clip_video_hit.items()}
elif material_only:
self.video_idx2label = {k: v.split(' ')[0] for k, v in clip_video_hit.items()}
else:
self.video_idx2label = clip_video_hit
self.video2indexes = {}
for video_idx in self.dataset:
video, start_idx = video_idx.split('_')
if video not in self.video2indexes.keys():
self.video2indexes[video] = []
self.video2indexes[video].append(start_idx)
for video in self.video2indexes.keys():
if len(self.video2indexes[video]) == 1: # given video contains only one hit
self.dataset.remove(
get_GH_data_identifier(video, self.video2indexes[video][0])
)
vid_classes = list(self.video_idx2label.values())
unique_classes = sorted(list(set(vid_classes)))
self.label2target = {label: target for target, label in enumerate(unique_classes)}
if action_only:
label2target_fix = {'hit': 0, 'scratch': 1}
elif material_only:
label2target_fix = {'carpet': 0, 'ceramic': 1, 'cloth': 2, 'dirt': 3, 'drywall': 4, 'glass': 5, 'grass': 6, 'gravel': 7, 'leaf': 8, 'metal': 9, 'paper': 10, 'plastic': 11, 'plastic-bag': 12, 'rock': 13, 'tile': 14, 'water': 15, 'wood': 16}
else:
label2target_fix = {'carpet hit': 0, 'carpet scratch': 1, 'ceramic hit': 2, 'ceramic scratch': 3, 'cloth hit': 4, 'cloth scratch': 5, 'dirt hit': 6, 'dirt scratch': 7, 'drywall hit': 8, 'drywall scratch': 9, 'glass hit': 10, 'glass scratch': 11, 'grass hit': 12, 'grass scratch': 13, 'gravel hit': 14, 'gravel scratch': 15, 'leaf hit': 16, 'leaf scratch': 17, 'metal hit': 18, 'metal scratch': 19, 'paper hit': 20, 'paper scratch': 21, 'plastic hit': 22, 'plastic scratch': 23, 'plastic-bag hit': 24, 'plastic-bag scratch': 25, 'rock hit': 26, 'rock scratch': 27, 'tile hit': 28, 'tile scratch': 29, 'water hit': 30, 'water scratch': 31, 'wood hit': 32, 'wood scratch': 33}
for k in self.label2target.keys():
assert k in label2target_fix.keys()
self.label2target = label2target_fix
self.target2label = {target: label for label, target in self.label2target.items()}
class2count = collections.Counter(vid_classes)
self.class_counts = torch.tensor([class2count[cls] for cls in range(len(class2count))])
print(self.label2target)
print(len(vid_classes), len(class2count), class2count)
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
item = {}
video_idx = self.dataset[idx]
spec_path = self.video_idx2path[video_idx]
spec = np.load(spec_path) # (80, 860)
# concat spec outside dataload
item['input'] = 2 * spec - 1 # (80, 860)
item['input'] = item['input'][:, :self.spec_take_first] # (80, 173) (since 2sec audio can only generate 173)
item['file_path'] = spec_path
item['label'] = self.video_idx2label[video_idx]
item['target'] = self.label2target[item['label']]
if self.spec_transform is not None:
item = self.spec_transform(item)
return item
class AMT_test(torch.utils.data.Dataset):
def __init__(self, spec_dir_path, spec_transform=None, action_only=False, material_only=False):
super().__init__()
self.specs_dir = spec_dir_path
self.spec_transform = spec_transform
self.spec_take_first = 173
self.dataset = sorted([os.path.join(self.specs_dir, f) for f in os.listdir(self.specs_dir)])
if action_only:
self.label2target = {'hit': 0, 'scratch': 1}
elif material_only:
self.label2target = {'carpet': 0, 'ceramic': 1, 'cloth': 2, 'dirt': 3, 'drywall': 4, 'glass': 5, 'grass': 6, 'gravel': 7, 'leaf': 8, 'metal': 9, 'paper': 10, 'plastic': 11, 'plastic-bag': 12, 'rock': 13, 'tile': 14, 'water': 15, 'wood': 16}
else:
self.label2target = {'carpet hit': 0, 'carpet scratch': 1, 'ceramic hit': 2, 'ceramic scratch': 3, 'cloth hit': 4, 'cloth scratch': 5, 'dirt hit': 6, 'dirt scratch': 7, 'drywall hit': 8, 'drywall scratch': 9, 'glass hit': 10, 'glass scratch': 11, 'grass hit': 12, 'grass scratch': 13, 'gravel hit': 14, 'gravel scratch': 15, 'leaf hit': 16, 'leaf scratch': 17, 'metal hit': 18, 'metal scratch': 19, 'paper hit': 20, 'paper scratch': 21, 'plastic hit': 22, 'plastic scratch': 23, 'plastic-bag hit': 24, 'plastic-bag scratch': 25, 'rock hit': 26, 'rock scratch': 27, 'tile hit': 28, 'tile scratch': 29, 'water hit': 30, 'water scratch': 31, 'wood hit': 32, 'wood scratch': 33}
self.target2label = {v: k for k, v in self.label2target.items()}
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
item = {}
spec_path = self.dataset[idx]
spec = np.load(spec_path) # (80, 860)
# concat spec outside dataload
item['input'] = 2 * spec - 1 # (80, 860)
item['input'] = item['input'][:, :self.spec_take_first] # (80, 173) (since 2sec audio can only generate 173)
item['file_path'] = spec_path
if self.spec_transform is not None:
item = self.spec_transform(item)
return item
if __name__ == '__main__':
from transforms import Crop, StandardNormalizeAudio, ToTensor
specs_path = '/home/nvme/data/vggsound/features/melspec_10s_22050hz/'
transforms = torchvision.transforms.transforms.Compose([
StandardNormalizeAudio(specs_path),
ToTensor(),
Crop([80, 848]),
])
datasets = {
'train': VGGSound('train', specs_path, transforms),
'valid': VGGSound('valid', specs_path, transforms),
'test': VGGSound('test', specs_path, transforms),
}
print(datasets['train'][0])
print(datasets['valid'][0])
print(datasets['test'][0])
print(datasets['train'].class_counts)
print(datasets['valid'].class_counts)
print(datasets['test'].class_counts)
|