Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| import numpy as np | |
| import datetime as dt | |
| import warnings | |
| from statsmodels.tsa.holtwinters import ExponentialSmoothing | |
| import plotly.graph_objects as go | |
| import gradio as gr | |
| warnings.filterwarnings("ignore") | |
| # ----------------------------- | |
| # CONFIG | |
| # ----------------------------- | |
| DATA_FILE = "202503-domae.parquet" # ๊ฐ์ ๊ฒฝ๋ก์ ๋์ฌ ์์ด์ผ ํจ | |
| FORECAST_END_YEAR = 2030 # ์์ธก ์ข ๋ฃ ์ฐ๋(12์๊น์ง) | |
| SEASONAL_PERIODS = 12 # ์๋ณ seasonality | |
| # ----------------------------- | |
| # 1. ๋ฐ์ดํฐ ์ ์ฌ & ์ ์ฒ๋ฆฌ | |
| # ----------------------------- | |
| def load_data(path: str) -> pd.DataFrame: | |
| """Parquet โ ์๋ณ ํผ๋ฒ ํ ์ด๋ธ(DateIndex, ์ด: ํ๋ชฉ, ๊ฐ: ๊ฐ๊ฒฉ).""" | |
| df = pd.read_parquet(path) | |
| # ๋ ์ง ์ปฌ๋ผ ์์ฑ/์ ๊ทํ (๋ ๊ฐ์ง ์ผ์ด์ค ์ง์) | |
| if "date" in df.columns: | |
| df["date"] = pd.to_datetime(df["date"]) | |
| elif "PRCE_REG_MM" in df.columns: | |
| df["date"] = pd.to_datetime(df["PRCE_REG_MM"].astype(str), format="%Y%m") | |
| else: | |
| raise ValueError("์ง์๋์ง ์๋ ๋ ์ง ์ปฌ๋ผ ํ์์ ๋๋ค.") | |
| # ๊ธฐ๋ณธ ์ปฌ๋ผ๋ช ํต์ผ | |
| item_col = "PDLT_NM" if "PDLT_NM" in df.columns else "item" | |
| price_col = "AVRG_PRCE" if "AVRG_PRCE" in df.columns else "price" | |
| monthly = ( | |
| df.groupby(["date", item_col])[price_col] | |
| .mean() | |
| .reset_index() | |
| ) | |
| pivot = ( | |
| monthly | |
| .pivot(index="date", columns=item_col, values=price_col) | |
| .sort_index() | |
| ) | |
| # ์ ์์์ผ MS ๋น๋๋ก ์ ๋ ฌ | |
| pivot.index = pd.to_datetime(pivot.index).to_period("M").to_timestamp() | |
| return pivot | |
| pivot = load_data(DATA_FILE) | |
| products = pivot.columns.tolist() | |
| # ----------------------------- | |
| # 2. ๊ณ ์ ๋ชจ๋ธ ์ ์ (HoltโWinters + fallback) | |
| # ----------------------------- | |
| def _fit_forecast(series: pd.Series) -> pd.Series: | |
| """์๋ณ ์๊ณ์ด โ 2025โ04 ์ดํ FORECAST_END_YEARโ12๊น์ง ์์ธก.""" | |
| # Ensure Monthly Start frequency | |
| series = series.asfreq("MS") | |
| # ์์ธก ๊ธฐ๊ฐ ๊ณ์ฐ | |
| last_date = series.index[-1] | |
| end_date = dt.datetime(FORECAST_END_YEAR, 12, 1) | |
| horizon = (end_date.year - last_date.year) * 12 + (end_date.month - last_date.month) | |
| if horizon <= 0: | |
| return pd.Series(dtype=float) | |
| try: | |
| model = ExponentialSmoothing( | |
| series, | |
| trend="add", | |
| seasonal="mul", | |
| seasonal_periods=SEASONAL_PERIODS, | |
| initialization_method="estimated", | |
| ) | |
| res = model.fit(optimized=True) | |
| fc = res.forecast(horizon) | |
| except Exception: | |
| # ํํธ์ํฐ์ค ํ์ต ์คํจ ์ ๋จ์ CAGR ๊ธฐ๋ฐ ์์ธก | |
| growth = series.pct_change().fillna(0).mean() | |
| fc = pd.Series( | |
| [series.iloc[-1] * (1 + growth) ** i for i in range(1, horizon + 1)], | |
| index=pd.date_range( | |
| series.index[-1] + pd.DateOffset(months=1), | |
| periods=horizon, | |
| freq="MS", | |
| ), | |
| ) | |
| return fc | |
| # ํ๋ชฉ๋ณ ์ ์ฒด ์๋ฆฌ์ฆ(๊ณผ๊ฑฐ+์์ธก) ์ฌ์ ๊ตฌ์ถ โ ์ฑ ๋ฐ์ ์๋ ๊ฐ์ | |
| FULL_SERIES = {} | |
| FORECASTS = {} | |
| for item in products: | |
| hist = pivot[item].dropna() | |
| fc = _fit_forecast(hist) | |
| FULL_SERIES[item] = pd.concat([hist, fc]) | |
| FORECASTS[item] = fc | |
| # ----------------------------- | |
| # 3. ๋ด์ผ ๊ฐ๊ฒฉ ์์ธก ํจ์ | |
| # ----------------------------- | |
| today = dt.date.today() | |
| tomorrow = today + dt.timedelta(days=1) | |
| def build_tomorrow_df() -> pd.DataFrame: | |
| """๋ด์ผ(์ผ ๋จ์) ์์ ๊ฐ๊ฒฉ DataFrame ๋ฐํ.""" | |
| preds = {} | |
| for item, series in FULL_SERIES.items(): | |
| # ์ผ ๋จ์ ์ ํ ๋ณด๊ฐ | |
| daily = series.resample("D").interpolate("linear") | |
| preds[item] = round(daily.loc[tomorrow], 2) if tomorrow in daily.index else np.nan | |
| return ( | |
| pd.DataFrame.from_dict(preds, orient="index", columns=[f"๋ด์ผ({tomorrow}) ์์๊ฐ(KRW)"]) | |
| .sort_index() | |
| ) | |
| tomorrow_df = build_tomorrow_df() | |
| # ----------------------------- | |
| # 4. ์๊ฐํ ํจ์ | |
| # ----------------------------- | |
| def plot_item(item: str): | |
| hist = pivot[item].dropna().asfreq("MS") | |
| fc = FORECASTS[item] | |
| fig = go.Figure() | |
| fig.add_trace(go.Scatter(x=hist.index, y=hist.values, mode="lines", name="Historical")) | |
| fig.add_trace(go.Scatter(x=fc.index, y=fc.values, mode="lines", name="Forecast")) | |
| fig.update_layout( | |
| title=f"{item} โ Monthly Avg Price (1996โ2025) & Forecast(2025โ04โ2030โ12)", | |
| xaxis_title="Date", | |
| yaxis_title="Price (KRW)", | |
| legend=dict(orientation="h", y=1.02, x=0.01), | |
| margin=dict(l=40, r=20, t=60, b=40), | |
| ) | |
| return fig | |
| # ----------------------------- | |
| # 5. Gradio UI | |
| # ----------------------------- | |
| with gr.Blocks(title="๋๋งค ๊ฐ๊ฒฉ ์์ธกย App") as demo: | |
| gr.Markdown("## ๐ ๋๋งค ๊ฐ๊ฒฉ ์์ธก ๋์๋ณด๋ (1996โ2030)") | |
| # ํ๋ชฉ ์ ํ โ ๊ทธ๋ํ ์ ๋ฐ์ดํธ | |
| item_dd = gr.Dropdown(products, value=products[0], label="ํ๋ชฉ ์ ํ") | |
| chart_out = gr.Plot(label="๊ฐ๊ฒฉ ์ถ์ธ") | |
| # ๋ด์ผ ๊ฐ๊ฒฉ ํ (์ด๊ธฐ ๊ณ ์ ) | |
| gr.Markdown(f"### ๋ด์ผ({tomorrow}) ๊ฐ ํ๋ชฉ ์์๊ฐ (KRW)") | |
| tomorrow_table = gr.Dataframe(tomorrow_df, interactive=False, height=400) | |
| def update_chart(product): | |
| return plot_item(product) | |
| item_dd.change(update_chart, inputs=item_dd, outputs=chart_out, queue=False) | |
| # ----------------------------- | |
| # 6. ์คํ ์คํฌ๋ฆฝํธ ์ํธ๋ฆฌํฌ์ธํธ | |
| # ----------------------------- | |
| if __name__ == "__main__": | |
| demo.launch() | |