Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from transformers import AutoImageProcessor, AutoModel
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import io
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
# CORS (para pruebas locales o producci贸n cruzada)
|
11 |
+
app.add_middleware(
|
12 |
+
CORSMiddleware,
|
13 |
+
allow_origins=["*"], # Cambia esto en producci贸n
|
14 |
+
allow_credentials=True,
|
15 |
+
allow_methods=["*"],
|
16 |
+
allow_headers=["*"],
|
17 |
+
)
|
18 |
+
|
19 |
+
# Carga del modelo y procesador
|
20 |
+
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
21 |
+
model = AutoModel.from_pretrained("facebook/dinov2-base")
|
22 |
+
model.eval()
|
23 |
+
|
24 |
+
@app.post("/embedding")
|
25 |
+
async def get_embedding(file: UploadFile = File(...)):
|
26 |
+
try:
|
27 |
+
image_bytes = await file.read()
|
28 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
29 |
+
|
30 |
+
inputs = processor(images=image, return_tensors="pt")
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(**inputs)
|
33 |
+
|
34 |
+
# Promedio de los embeddings de todos los tokens (sin CLS)
|
35 |
+
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
|
36 |
+
|
37 |
+
return {"embedding": embedding}
|
38 |
+
|
39 |
+
except Exception as e:
|
40 |
+
return {"error": str(e)}
|