Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,65 @@
|
|
1 |
-
from fastapi import FastAPI, File, UploadFile
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from transformers import AutoImageProcessor, AutoModel
|
4 |
from PIL import Image
|
5 |
import torch
|
|
|
6 |
import io
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
-
# CORS
|
11 |
app.add_middleware(
|
12 |
CORSMiddleware,
|
13 |
-
allow_origins=["*"],
|
14 |
allow_credentials=True,
|
15 |
allow_methods=["*"],
|
16 |
allow_headers=["*"],
|
17 |
)
|
18 |
|
19 |
-
# Carga del modelo
|
20 |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
21 |
model = AutoModel.from_pretrained("facebook/dinov2-base")
|
22 |
model.eval()
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
@app.post("/embedding")
|
25 |
-
async def get_embedding(
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
try:
|
27 |
-
image_bytes = await file.read()
|
28 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
29 |
-
|
30 |
inputs = processor(images=image, return_tensors="pt")
|
31 |
with torch.no_grad():
|
32 |
outputs = model(**inputs)
|
33 |
|
34 |
-
# Promedio de
|
35 |
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
|
36 |
|
37 |
-
return {
|
|
|
|
|
|
|
38 |
|
39 |
except Exception as e:
|
40 |
return {"error": str(e)}
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
from transformers import AutoImageProcessor, AutoModel
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
+
import uuid
|
7 |
import io
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
+
# Habilita CORS si lo necesitas
|
12 |
app.add_middleware(
|
13 |
CORSMiddleware,
|
14 |
+
allow_origins=["*"],
|
15 |
allow_credentials=True,
|
16 |
allow_methods=["*"],
|
17 |
allow_headers=["*"],
|
18 |
)
|
19 |
|
20 |
+
# Carga del modelo
|
21 |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
22 |
model = AutoModel.from_pretrained("facebook/dinov2-base")
|
23 |
model.eval()
|
24 |
|
25 |
+
# Memoria temporal para almacenar im谩genes (podr铆as usar base de datos si prefieres)
|
26 |
+
temp_images = {}
|
27 |
+
event_ids = {}
|
28 |
+
|
29 |
+
# Paso 1: Subida de imagen + event_id
|
30 |
+
@app.post("/upload")
|
31 |
+
async def upload_image(file: UploadFile = File(...), event_id: str = Form(...)):
|
32 |
+
try:
|
33 |
+
content = await file.read()
|
34 |
+
image_id = str(uuid.uuid4())
|
35 |
+
temp_images[image_id] = content
|
36 |
+
event_ids[image_id] = event_id
|
37 |
+
return {"image_id": image_id, "event_id": event_id}
|
38 |
+
except Exception as e:
|
39 |
+
return {"error": str(e)}
|
40 |
+
|
41 |
+
# Paso 2: Obtener embedding por image_id
|
42 |
@app.post("/embedding")
|
43 |
+
async def get_embedding(image_id: str = Form(...)):
|
44 |
+
if image_id not in temp_images:
|
45 |
+
raise HTTPException(status_code=404, detail="image_id not found")
|
46 |
+
|
47 |
+
event_id = event_ids[image_id]
|
48 |
+
image_bytes = temp_images[image_id]
|
49 |
+
|
50 |
try:
|
|
|
51 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
|
|
52 |
inputs = processor(images=image, return_tensors="pt")
|
53 |
with torch.no_grad():
|
54 |
outputs = model(**inputs)
|
55 |
|
56 |
+
# Promedio de todos los tokens (puedes cambiar por CLS si quieres)
|
57 |
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
|
58 |
|
59 |
+
return {
|
60 |
+
"event_id": event_id,
|
61 |
+
"embedding": embedding
|
62 |
+
}
|
63 |
|
64 |
except Exception as e:
|
65 |
return {"error": str(e)}
|