Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,26 +2,27 @@ import gradio as gr
|
|
2 |
from transformers import AutoImageProcessor, AutoModel
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
# Cargar el modelo solo una vez
|
7 |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
8 |
model = AutoModel.from_pretrained("facebook/dinov2-base")
|
9 |
model.eval()
|
10 |
|
11 |
-
def get_embedding(
|
12 |
-
image = Image.
|
13 |
inputs = processor(images=image, return_tensors="pt")
|
14 |
with torch.no_grad():
|
15 |
embeddings = model(**inputs).last_hidden_state[:, 0] # CLS token
|
16 |
return embeddings.squeeze().tolist()
|
17 |
|
18 |
-
# Interfaz Gradio para uso visual o programático (API)
|
19 |
iface = gr.Interface(
|
20 |
fn=get_embedding,
|
21 |
-
inputs=gr.Image(type="
|
22 |
outputs="json",
|
23 |
description="Microservicio para extraer embeddings de imágenes usando DINOv2."
|
24 |
)
|
25 |
|
26 |
-
iface.launch()
|
27 |
iface.queue()
|
|
|
|
|
|
2 |
from transformers import AutoImageProcessor, AutoModel
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
|
7 |
# Cargar el modelo solo una vez
|
8 |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
9 |
model = AutoModel.from_pretrained("facebook/dinov2-base")
|
10 |
model.eval()
|
11 |
|
12 |
+
def get_embedding(image_np):
|
13 |
+
image = Image.fromarray(image_np).convert("RGB")
|
14 |
inputs = processor(images=image, return_tensors="pt")
|
15 |
with torch.no_grad():
|
16 |
embeddings = model(**inputs).last_hidden_state[:, 0] # CLS token
|
17 |
return embeddings.squeeze().tolist()
|
18 |
|
|
|
19 |
iface = gr.Interface(
|
20 |
fn=get_embedding,
|
21 |
+
inputs=gr.Image(type="numpy"), # CAMBIO CLAVE AQUÍ
|
22 |
outputs="json",
|
23 |
description="Microservicio para extraer embeddings de imágenes usando DINOv2."
|
24 |
)
|
25 |
|
|
|
26 |
iface.queue()
|
27 |
+
iface.launch()
|
28 |
+
|