Spaces:
Sleeping
Sleeping
nuevo update
Browse files
app.py
CHANGED
@@ -1,24 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoImageProcessor, AutoModel
|
3 |
import torch
|
|
|
|
|
|
|
4 |
|
5 |
-
# Cargar el modelo DINOv2 una sola vez
|
6 |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
7 |
model = AutoModel.from_pretrained("facebook/dinov2-base")
|
8 |
|
9 |
-
def get_embedding(
|
10 |
-
|
|
|
|
|
|
|
11 |
inputs = processor(images=image, return_tensors="pt")
|
12 |
with torch.no_grad():
|
13 |
-
embeddings = model(**inputs).last_hidden_state[:, 0]
|
14 |
return embeddings.squeeze().tolist()
|
15 |
|
16 |
-
# Gradio UI solo para aceptar imágenes y devolver JSON
|
17 |
iface = gr.Interface(
|
18 |
fn=get_embedding,
|
19 |
-
inputs=
|
20 |
outputs="json",
|
21 |
-
description="Microservicio para extraer embeddings
|
22 |
)
|
23 |
|
24 |
iface.queue() # 👈 Esta línea activa el sistema de event_id y polling
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoImageProcessor, AutoModel
|
3 |
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import base64
|
6 |
+
import io
|
7 |
|
|
|
8 |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
9 |
model = AutoModel.from_pretrained("facebook/dinov2-base")
|
10 |
|
11 |
+
def get_embedding(base64_str):
|
12 |
+
header, encoded = base64_str.split(",", 1)
|
13 |
+
image_data = base64.b64decode(encoded)
|
14 |
+
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
15 |
+
|
16 |
inputs = processor(images=image, return_tensors="pt")
|
17 |
with torch.no_grad():
|
18 |
+
embeddings = model(**inputs).last_hidden_state[:, 0]
|
19 |
return embeddings.squeeze().tolist()
|
20 |
|
|
|
21 |
iface = gr.Interface(
|
22 |
fn=get_embedding,
|
23 |
+
inputs="text", # ahora recibimos un string base64
|
24 |
outputs="json",
|
25 |
+
description="Microservicio para extraer embeddings desde base64."
|
26 |
)
|
27 |
|
28 |
iface.queue() # 👈 Esta línea activa el sistema de event_id y polling
|