Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoImageProcessor, AutoModel
|
3 |
import torch
|
|
|
4 |
|
5 |
-
# Cargar el modelo
|
6 |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
7 |
model = AutoModel.from_pretrained("facebook/dinov2-base")
|
|
|
8 |
|
9 |
-
def get_embedding(
|
|
|
10 |
inputs = processor(images=image, return_tensors="pt")
|
11 |
with torch.no_grad():
|
12 |
embeddings = model(**inputs).last_hidden_state[:, 0] # CLS token
|
13 |
return embeddings.squeeze().tolist()
|
14 |
|
15 |
-
# Gradio
|
16 |
iface = gr.Interface(
|
17 |
fn=get_embedding,
|
18 |
-
inputs=gr.Image(type="
|
19 |
outputs="json",
|
20 |
description="Microservicio para extraer embeddings de imágenes usando DINOv2."
|
21 |
)
|
22 |
|
23 |
iface.launch()
|
24 |
-
iface.queue()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoImageProcessor, AutoModel
|
3 |
import torch
|
4 |
+
from PIL import Image
|
5 |
|
6 |
+
# Cargar el modelo solo una vez
|
7 |
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
8 |
model = AutoModel.from_pretrained("facebook/dinov2-base")
|
9 |
+
model.eval()
|
10 |
|
11 |
+
def get_embedding(image_file):
|
12 |
+
image = Image.open(image_file).convert("RGB")
|
13 |
inputs = processor(images=image, return_tensors="pt")
|
14 |
with torch.no_grad():
|
15 |
embeddings = model(**inputs).last_hidden_state[:, 0] # CLS token
|
16 |
return embeddings.squeeze().tolist()
|
17 |
|
18 |
+
# Interfaz Gradio para uso visual o programático (API)
|
19 |
iface = gr.Interface(
|
20 |
fn=get_embedding,
|
21 |
+
inputs=gr.Image(type="file"), # << cambia aquí
|
22 |
outputs="json",
|
23 |
description="Microservicio para extraer embeddings de imágenes usando DINOv2."
|
24 |
)
|
25 |
|
26 |
iface.launch()
|
27 |
+
iface.queue()
|