Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- app.py +57 -0
- deep_learning_model(okt_drop).h5 +3 -0
- requirements.txt +6 -0
- scaler.pkl +3 -0
- tokenizer(okt_drop).json +0 -0
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from tensorflow.keras.models import load_model
|
| 4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 5 |
+
from sklearn.preprocessing import StandardScaler
|
| 6 |
+
import json
|
| 7 |
+
import re
|
| 8 |
+
from konlpy.tag import Okt
|
| 9 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
| 10 |
+
import pickle
|
| 11 |
+
|
| 12 |
+
# λͺ¨λΈ λ° ν ν¬λμ΄μ νμΌ λ‘λ
|
| 13 |
+
model = load_model('deep_learning_model(okt_drop).h5', compile=False)
|
| 14 |
+
|
| 15 |
+
with open('tokenizer(okt_drop).json', 'r', encoding='utf-8') as f:
|
| 16 |
+
tokenizer_data = f.read()
|
| 17 |
+
|
| 18 |
+
tokenizer = tokenizer_from_json(tokenizer_data)
|
| 19 |
+
|
| 20 |
+
with open('scaler.pkl', 'rb') as f:
|
| 21 |
+
scaler = pickle.load(f)
|
| 22 |
+
|
| 23 |
+
def calculate_sentence_stats(paragraph):
|
| 24 |
+
paragraph = re.sub(r'\.{2,}', '.', paragraph)
|
| 25 |
+
sentences = re.split(r'[.!?]', paragraph)
|
| 26 |
+
sentence_lengths = [len(s.strip()) for s in sentences if s.strip()]
|
| 27 |
+
sentence_count = len(sentence_lengths)
|
| 28 |
+
average_length = sum(sentence_lengths) / len(sentence_lengths) if sentence_lengths else 0
|
| 29 |
+
return sentence_count, average_length
|
| 30 |
+
|
| 31 |
+
def process_text(text):
|
| 32 |
+
okt = Okt()
|
| 33 |
+
texts = ' '.join(okt.nouns(text))
|
| 34 |
+
sequences = tokenizer.texts_to_sequences([texts])
|
| 35 |
+
max_len = 301
|
| 36 |
+
X = pad_sequences(sequences, maxlen=max_len)
|
| 37 |
+
return X
|
| 38 |
+
|
| 39 |
+
def predict_text(text, grade):
|
| 40 |
+
X = process_text(text)
|
| 41 |
+
sentence_count, sentence_average = calculate_sentence_stats(text)
|
| 42 |
+
length = len(text)
|
| 43 |
+
emoticon = 0
|
| 44 |
+
numeric_features = np.array([[int(grade), length, emoticon, sentence_count, sentence_average]])
|
| 45 |
+
numeric_features = scaler.transform(numeric_features)
|
| 46 |
+
prediction = model.predict([X, numeric_features])
|
| 47 |
+
predicted_label = 'μΈκ³΅μ§λ₯μ΄ μμ±ν λ
μκ°μλ¬Έμ
λλ€.' if prediction[0][0] > 0.5 else 'μ¬λμ΄ μμ±ν λ
μκ°μλ¬Έμ
λλ€.'
|
| 48 |
+
return predicted_label
|
| 49 |
+
|
| 50 |
+
iface = gr.Interface(
|
| 51 |
+
fn=predict_text,
|
| 52 |
+
inputs=[gr.Textbox(lines=10, placeholder="Enter Text Here..."), gr.Textbox(label="Grade")],
|
| 53 |
+
outputs="text",
|
| 54 |
+
title="λ
μκ°μλ¬Έ λΆμκΈ°",
|
| 55 |
+
description="μ΄ λ
μκ°μλ¬Έμ΄ νμμ μν΄ μμ±λμλμ§, μΈκ³΅μ§λ₯μ μν΄ μμ±λμλμ§ λΆμν©λλ€."
|
| 56 |
+
)
|
| 57 |
+
iface.launch(debug=True)
|
deep_learning_model(okt_drop).h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f464139189e497a20f91ea5f511ef0e15271f45ac0dcbf4743f9f782ce79413c
|
| 3 |
+
size 4892352
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
numpy
|
| 3 |
+
tensorflow==2.15.0
|
| 4 |
+
scikit-learn
|
| 5 |
+
konlpy
|
| 6 |
+
h5py
|
scaler.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a2679e430d3bfdd5cef34882fef19ac9c143a3355982123d4168687f0696c660
|
| 3 |
+
size 720
|
tokenizer(okt_drop).json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|