File size: 2,243 Bytes
0c745fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import StandardScaler
import json
import re
from konlpy.tag import Okt
from tensorflow.keras.preprocessing.text import tokenizer_from_json
import pickle
# λͺ¨λΈ λ° ν ν¬λμ΄μ νμΌ λ‘λ
model = load_model('deep_learning_model(okt_drop).h5', compile=False)
with open('tokenizer(okt_drop).json', 'r', encoding='utf-8') as f:
tokenizer_data = f.read()
tokenizer = tokenizer_from_json(tokenizer_data)
with open('scaler.pkl', 'rb') as f:
scaler = pickle.load(f)
def calculate_sentence_stats(paragraph):
paragraph = re.sub(r'\.{2,}', '.', paragraph)
sentences = re.split(r'[.!?]', paragraph)
sentence_lengths = [len(s.strip()) for s in sentences if s.strip()]
sentence_count = len(sentence_lengths)
average_length = sum(sentence_lengths) / len(sentence_lengths) if sentence_lengths else 0
return sentence_count, average_length
def process_text(text):
okt = Okt()
texts = ' '.join(okt.nouns(text))
sequences = tokenizer.texts_to_sequences([texts])
max_len = 301
X = pad_sequences(sequences, maxlen=max_len)
return X
def predict_text(text, grade):
X = process_text(text)
sentence_count, sentence_average = calculate_sentence_stats(text)
length = len(text)
emoticon = 0
numeric_features = np.array([[int(grade), length, emoticon, sentence_count, sentence_average]])
numeric_features = scaler.transform(numeric_features)
prediction = model.predict([X, numeric_features])
predicted_label = 'μΈκ³΅μ§λ₯μ΄ μμ±ν λ
μκ°μλ¬Έμ
λλ€.' if prediction[0][0] > 0.5 else 'μ¬λμ΄ μμ±ν λ
μκ°μλ¬Έμ
λλ€.'
return predicted_label
iface = gr.Interface(
fn=predict_text,
inputs=[gr.Textbox(lines=10, placeholder="Enter Text Here..."), gr.Textbox(label="Grade")],
outputs="text",
title="λ
μκ°μλ¬Έ λΆμκΈ°",
description="μ΄ λ
μκ°μλ¬Έμ΄ νμμ μν΄ μμ±λμλμ§, μΈκ³΅μ§λ₯μ μν΄ μμ±λμλμ§ λΆμν©λλ€."
)
iface.launch(debug=True)
|