imagetoaudio / app.py
yongyeol's picture
Update app.py
02c5916 verified
raw
history blame
1.54 kB
import gradio as gr
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
from PIL import Image
import torch
import requests
# Load caption model
caption_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
# Load ChatTTS (via inference API)
CHAT_TTS_API = "https://api-inference.huggingface.co/models/2Noise/ChatTTS"
headers = {"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"}
def generate_caption(image):
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
output_ids = caption_model.generate(pixel_values, max_length=50, num_beams=4)
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return caption
def tts_audio(text):
payload = {"inputs": text}
response = requests.post(CHAT_TTS_API, headers=headers, json=payload)
if response.status_code == 200:
return response.content
else:
raise Exception(f"TTS API 오류: {response.status_code}, {response.text}")
def process(image):
caption = generate_caption(image)
audio = tts_audio(caption)
return caption, (audio, "result.wav")
demo = gr.Interface(
fn=process,
inputs=gr.Image(type="pil"),
outputs=[gr.Text(label="설명"), gr.Audio(label="TTS 음성")],
title="🎨 AI 그림 설명 낭독기",
)
demo.launch()