Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,107 +1,115 @@
|
|
1 |
import gradio as gr
|
2 |
import logging
|
3 |
from PIL import Image
|
|
|
|
|
4 |
from transformers import (
|
5 |
BlipProcessor,
|
6 |
BlipForConditionalGeneration,
|
7 |
pipeline,
|
8 |
AutoTokenizer,
|
9 |
-
VitsModel
|
10 |
)
|
11 |
-
import torch
|
12 |
-
from uroman import Uroman
|
13 |
|
14 |
-
# βββββββββββββββ λ‘κΉ
μ€μ βββββββββββββββ
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
|
17 |
-
#
|
18 |
-
processor = BlipProcessor.from_pretrained(
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
-
# βββββββββββββββ 2. μμ΄ β νκ΅μ΄ λ²μ βββββββββββββββ
|
23 |
translation_pipeline = pipeline(
|
24 |
"translation",
|
25 |
model="facebook/nllb-200-distilled-600M",
|
26 |
src_lang="eng_Latn",
|
27 |
tgt_lang="kor_Hang",
|
28 |
max_length=200,
|
29 |
-
device=0 if torch.cuda.is_available() else -1
|
30 |
)
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
uroman = Uroman()
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
with torch.no_grad():
|
45 |
-
|
46 |
-
|
47 |
-
return tts_model.config.sampling_rate, waveform
|
48 |
|
49 |
-
|
50 |
-
def
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# β μμ΄ μΊ‘μ
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
# β‘ λ²μ
|
60 |
try:
|
61 |
-
|
62 |
-
caption_ko = result[0]["translation_text"].strip()
|
63 |
except Exception as e:
|
64 |
-
logging.error(f"[ERROR] λ²μ
|
65 |
-
|
66 |
-
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
return caption_ko, (sr, wav)
|
75 |
-
except Exception as e:
|
76 |
-
logging.error(f"[ERROR] TTS μ€λ₯: {e}")
|
77 |
-
return caption_ko, None
|
78 |
-
|
79 |
-
# βββββββββββββββ 5. Gradio μΈν°νμ΄μ€ βββββββββββββββ
|
80 |
-
with gr.Blocks(
|
81 |
-
title="μ΄λ―Έμ§ β νκΈ μΊ‘μ
& μμ± λ³ν",
|
82 |
-
css="footer {display: none !important;}" # νΈν° μ¨κΈ°κΈ°
|
83 |
-
) as demo:
|
84 |
gr.Markdown(
|
85 |
-
"## μ΄λ―Έμ§ β νκΈ μΊ‘μ
& μμ± λ³ν\n"
|
86 |
-
"BLIP
|
87 |
)
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
105 |
|
106 |
if __name__ == "__main__":
|
107 |
-
demo.launch(
|
|
|
1 |
import gradio as gr
|
2 |
import logging
|
3 |
from PIL import Image
|
4 |
+
import torch
|
5 |
+
from uroman import Uroman
|
6 |
from transformers import (
|
7 |
BlipProcessor,
|
8 |
BlipForConditionalGeneration,
|
9 |
pipeline,
|
10 |
AutoTokenizer,
|
11 |
+
VitsModel,
|
12 |
)
|
|
|
|
|
13 |
|
|
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
|
16 |
+
# βββββββββ 1. λͺ¨λΈ λ‘λ βββββββββ
|
17 |
+
processor = BlipProcessor.from_pretrained(
|
18 |
+
"Salesforce/blip-image-captioning-large"
|
19 |
+
)
|
20 |
+
blip_model = BlipForConditionalGeneration.from_pretrained(
|
21 |
+
"Salesforce/blip-image-captioning-large"
|
22 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
|
|
|
24 |
translation_pipeline = pipeline(
|
25 |
"translation",
|
26 |
model="facebook/nllb-200-distilled-600M",
|
27 |
src_lang="eng_Latn",
|
28 |
tgt_lang="kor_Hang",
|
29 |
max_length=200,
|
30 |
+
device=0 if torch.cuda.is_available() else -1,
|
31 |
)
|
32 |
|
33 |
+
# --- TTS (ko / en) ---
|
34 |
+
tts_ko = VitsModel.from_pretrained("facebook/mms-tts-kor").to(
|
35 |
+
"cuda" if torch.cuda.is_available() else "cpu"
|
36 |
+
)
|
37 |
+
tok_ko = AutoTokenizer.from_pretrained("facebook/mms-tts-kor")
|
38 |
+
|
39 |
+
tts_en = VitsModel.from_pretrained("facebook/mms-tts-eng").to(
|
40 |
+
"cuda" if torch.cuda.is_available() else "cpu"
|
41 |
+
)
|
42 |
+
tok_en = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
43 |
|
44 |
uroman = Uroman()
|
45 |
|
46 |
+
|
47 |
+
# βββββββββ 2. κ³΅ν΅ ν¨μ βββββββββ
|
48 |
+
def tts(model, tokenizer, text: str):
|
49 |
+
roman = uroman.romanize_string(text)
|
50 |
+
ids = tokenizer(roman, return_tensors="pt").input_ids.long().to(model.device)
|
51 |
with torch.no_grad():
|
52 |
+
wav = model(input_ids=ids).waveform.squeeze().cpu().numpy()
|
53 |
+
return model.config.sampling_rate, wav
|
|
|
54 |
|
55 |
+
|
56 |
+
def generate(img: Image.Image, lang: str):
|
57 |
+
"""
|
58 |
+
lang == "ko" β νκ΅μ΄ μΊ‘μ
+μμ±
|
59 |
+
lang == "en" β μμ΄ μΊ‘μ
+μμ±
|
60 |
+
"""
|
61 |
+
if img is None:
|
62 |
+
raise gr.Error("λ¨Όμ μ΄λ―Έμ§λ₯Ό μ
λ‘λνμΈμ π·")
|
63 |
|
64 |
# β μμ΄ μΊ‘μ
|
65 |
+
pix = processor(images=img, return_tensors="pt").pixel_values.to(blip_model.device)
|
66 |
+
cap_en = processor.batch_decode(
|
67 |
+
blip_model.generate(pix, max_length=64), skip_special_tokens=True
|
68 |
+
)[0].strip()
|
69 |
+
|
70 |
+
if lang == "en":
|
71 |
+
sr, wav = tts(tts_en, tok_en, cap_en)
|
72 |
+
return cap_en, (sr, wav)
|
73 |
|
74 |
+
# β‘ λ²μ(βko)
|
75 |
try:
|
76 |
+
cap_ko = translation_pipeline(cap_en)[0]["translation_text"].strip()
|
|
|
77 |
except Exception as e:
|
78 |
+
logging.error(f"[ERROR] λ²μ μ€ν¨: {e}")
|
79 |
+
cap_ko = ""
|
80 |
+
if not cap_ko:
|
81 |
+
return "λ²μ μ€λ₯κ° λ°μνμ΅λλ€.", None
|
82 |
|
83 |
+
sr, wav = tts(tts_ko, tok_ko, cap_ko)
|
84 |
+
return cap_ko, (sr, wav)
|
85 |
|
86 |
+
|
87 |
+
# βββββββββ 3. Gradio UI βββββββββ
|
88 |
+
with gr.Blocks(title="Image β Caption & TTS", css="footer{display:none;}") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
gr.Markdown(
|
90 |
+
"## μ΄λ―Έμ§ β νκΈ / English μΊ‘μ
& μμ± λ³ν\n"
|
91 |
+
"BLIP (caption) β NLLB (translate) β VITS (TTS)"
|
92 |
)
|
93 |
|
94 |
+
img_state = gr.State() # μ΅κ·Ό μ΄λ―Έμ§ μ μ₯
|
95 |
+
|
96 |
+
input_img = gr.Image(type="pil", label="π· μ΄λ―Έμ§ μ
λ‘λ")
|
97 |
+
caption_box = gr.Textbox(label="π μΊ‘μ
κ²°κ³Ό")
|
98 |
+
audio_play = gr.Audio(label="π μμ± μ¬μ", type="numpy")
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
ko_btn = gr.Button("νκΈ μμ±")
|
102 |
+
en_btn = gr.Button("English")
|
103 |
+
|
104 |
+
# μ΄λ―Έμ§ μ
λ‘λ μ state μ
λ°μ΄νΈ
|
105 |
+
def store_img(img):
|
106 |
+
return img
|
107 |
+
|
108 |
+
input_img.change(store_img, inputs=input_img, outputs=img_state, queue=False)
|
109 |
+
|
110 |
+
# λ²νΌ β μμ± ν¨μ μ°κ²°
|
111 |
+
ko_btn.click(fn=lambda img: generate(img, "ko"), inputs=img_state, outputs=[caption_box, audio_play])
|
112 |
+
en_btn.click(fn=lambda img: generate(img, "en"), inputs=img_state, outputs=[caption_box, audio_play])
|
113 |
|
114 |
if __name__ == "__main__":
|
115 |
+
demo.launch()
|