Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ───────────────────────────────────────────────────────────
|
2 |
+
# app.py – Gradio Space: Text ➜ 2D (Kontext) ➜ 3D (Hunyuan3D)
|
3 |
+
# -----------------------------------------------------------
|
4 |
+
# Requirements (add to requirements.txt):
|
5 |
+
# torch>=2.2.0
|
6 |
+
# diffusers>=0.27.0
|
7 |
+
# hy3dgen # Hunyuan3D official PyPI after Jan‑2025
|
8 |
+
# trimesh
|
9 |
+
# gradio==4.26.0
|
10 |
+
# pillow
|
11 |
+
# -----------------------------------------------------------
|
12 |
+
# NOTE: • Set the following secrets in the Space **Settings → Secrets**
|
13 |
+
# HF_TOKEN – your Hugging Face access token (for gated models)
|
14 |
+
# BFL_API_KEY – optional, required if using Black‑Forest Labs usage tracking
|
15 |
+
# • GPU (A10G/16 GB↑) is strongly recommended.
|
16 |
+
# • Hunyuan3D installs a CUDA‑based custom rasteriser at runtime; build
|
17 |
+
# wheels are provided on Linux/Windows. See model card instructions.
|
18 |
+
# ---------------------------------------------------------------------------
|
19 |
+
|
20 |
+
import os
|
21 |
+
import tempfile
|
22 |
+
from typing import List, Tuple
|
23 |
+
|
24 |
+
import gradio as gr
|
25 |
+
import torch
|
26 |
+
from PIL import Image
|
27 |
+
from huggingface_hub import login as hf_login
|
28 |
+
|
29 |
+
# ─────────── Login / device ───────────
|
30 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
31 |
+
if HF_TOKEN:
|
32 |
+
hf_login(token=HF_TOKEN, add_to_git_credential=False)
|
33 |
+
|
34 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
+
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
36 |
+
|
37 |
+
# ─────────── Load FLUX .1 Kontext (2D) ───────────
|
38 |
+
from diffusers import FluxKontextPipeline, FluxPipeline # FluxPipeline = text‑to‑image variant
|
39 |
+
|
40 |
+
print("[+] Loading FLUX.1 Kontext [dev] …")
|
41 |
+
kontext_pipe = FluxKontextPipeline.from_pretrained(
|
42 |
+
"black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=DTYPE
|
43 |
+
).to(DEVICE)
|
44 |
+
kontext_pipe.set_progress_bar_config(disable=True)
|
45 |
+
|
46 |
+
print("[+] Loading FLUX.1 [dev] (text‑to‑image) …")
|
47 |
+
text2img_pipe = FluxPipeline.from_pretrained(
|
48 |
+
"black-forest-labs/FLUX.1-dev", torch_dtype=DTYPE
|
49 |
+
).to(DEVICE)
|
50 |
+
text2img_pipe.set_progress_bar_config(disable=True)
|
51 |
+
|
52 |
+
# ─────────── Load Hunyuan3D‑2 (3D) ───────────
|
53 |
+
print("[+] Loading Hunyuan3D‑2 shape+texture … (this may take a while)")
|
54 |
+
from hy3dgen.shapegen import Hunyuan3DDiTFlowMatchingPipeline
|
55 |
+
from hy3dgen.texgen import Hunyuan3DPaintPipeline
|
56 |
+
|
57 |
+
shape_pipe = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
|
58 |
+
"tencent/Hunyuan3D-2", torch_dtype=DTYPE
|
59 |
+
).to(DEVICE)
|
60 |
+
shape_pipe.set_progress_bar_config(disable=True)
|
61 |
+
|
62 |
+
paint_pipe = Hunyuan3DPaintPipeline.from_pretrained(
|
63 |
+
"tencent/Hunyuan3D-2", torch_dtype=DTYPE
|
64 |
+
).to(DEVICE)
|
65 |
+
paint_pipe.set_progress_bar_config(disable=True)
|
66 |
+
|
67 |
+
# ───────────────────────────────────────────────
|
68 |
+
# Helper functions
|
69 |
+
# ───────────────────────────────────────────────
|
70 |
+
|
71 |
+
def generate_single_2d(prompt: str, image: Image.Image | None, guidance_scale: float) -> Image.Image:
|
72 |
+
"""Either edit an existing image via Kontext or generate a fresh one via Flux text2img."""
|
73 |
+
if image is None:
|
74 |
+
result = text2img_pipe(prompt=prompt, guidance_scale=guidance_scale).images[0]
|
75 |
+
else:
|
76 |
+
result = kontext_pipe(image=image, prompt=prompt, guidance_scale=guidance_scale).images[0]
|
77 |
+
return result
|
78 |
+
|
79 |
+
|
80 |
+
def generate_multiview(prompt: str, base_image: Image.Image, guidance_scale: float) -> List[Image.Image]:
|
81 |
+
"""Generate four canonical views (front / back / left / right) by re‑prompting Kontext."""
|
82 |
+
views = [
|
83 |
+
("front view", base_image),
|
84 |
+
(
|
85 |
+
"left side view",
|
86 |
+
kontext_pipe(image=base_image, prompt=f"{prompt}, left side view", guidance_scale=guidance_scale).images[0],
|
87 |
+
),
|
88 |
+
(
|
89 |
+
"right side view",
|
90 |
+
kontext_pipe(image=base_image, prompt=f"{prompt}, right side view", guidance_scale=guidance_scale).images[0],
|
91 |
+
),
|
92 |
+
(
|
93 |
+
"back view",
|
94 |
+
kontext_pipe(image=base_image, prompt=f"{prompt}, back view", guidance_scale=guidance_scale).images[0],
|
95 |
+
),
|
96 |
+
]
|
97 |
+
# Return only images, keep order [front, left, right, back]
|
98 |
+
return [v[1] for v in views]
|
99 |
+
|
100 |
+
|
101 |
+
def build_3d_mesh(prompt: str, images: List[Image.Image]) -> str:
|
102 |
+
"""Call Hunyuan3D pipelines to build geometry then paint texture. Returns path to GLB."""
|
103 |
+
# For single‑view use first image; multi‑view (≤6) accepted by Hunyuan3D
|
104 |
+
single_or_multi = images if len(images) > 1 else images[0]
|
105 |
+
mesh = shape_pipe(image=single_or_multi, prompt=prompt)[0]
|
106 |
+
mesh = paint_pipe(mesh, image=single_or_multi)
|
107 |
+
|
108 |
+
tmpdir = tempfile.mkdtemp()
|
109 |
+
out_path = os.path.join(tmpdir, "mesh.glb")
|
110 |
+
mesh.export(out_path) # trimesh export
|
111 |
+
return out_path
|
112 |
+
|
113 |
+
|
114 |
+
# ─────────── Gradio interface ───────────
|
115 |
+
CSS = """
|
116 |
+
footer {visibility: hidden;}
|
117 |
+
"""
|
118 |
+
|
119 |
+
def workflow(prompt: str, input_image: Image.Image | None, multiview: bool, guidance_scale: float) -> Tuple[List[Image.Image], str, str]:
|
120 |
+
"""Main inference wrapper."""
|
121 |
+
if not prompt:
|
122 |
+
raise gr.Error("프롬프트(설명)를 입력하세요 📌")
|
123 |
+
|
124 |
+
# 1️⃣ 2D Generation / Editing
|
125 |
+
base_img = generate_single_2d(prompt, input_image, guidance_scale)
|
126 |
+
images = [base_img]
|
127 |
+
|
128 |
+
if multiview:
|
129 |
+
images = generate_multiview(prompt, base_img, guidance_scale)
|
130 |
+
|
131 |
+
# 2️⃣ 3D Generation
|
132 |
+
model_path = build_3d_mesh(prompt, images)
|
133 |
+
|
134 |
+
return images, model_path, model_path # gallery, viewer, file download
|
135 |
+
|
136 |
+
|
137 |
+
def build_ui():
|
138 |
+
with gr.Blocks(css=CSS, title="Text ➜ 2D ➜ 3D (Kontext × Hunyuan3D)") as demo:
|
139 |
+
gr.Markdown("# 🌀 텍스트 → 2D → 3D 생성기")
|
140 |
+
gr.Markdown(
|
141 |
+
"Kontext로 일관된 2D 이미지를 만든 뒤, Hunyuan3D‑2로 텍스처 3D 메시에스를 생성합니다.\n"
|
142 |
+
"⏱️ 첫 실행은 모델 로딩으로 시간이 걸립니다."
|
143 |
+
)
|
144 |
+
|
145 |
+
with gr.Row():
|
146 |
+
with gr.Column():
|
147 |
+
prompt = gr.Textbox(label="프롬프트 / 설명", placeholder="예: 파란 모자를 쓴 귀여운 로봇")
|
148 |
+
input_image = gr.Image(label="(선택) 편집할 참조 이미지", type="pil")
|
149 |
+
multiview = gr.Checkbox(label="멀티뷰(좌/우/후면 포함) 3D 품질 향상", value=True)
|
150 |
+
guidance = gr.Slider(0.5, 7.5, 2.5, step=0.1, label="Guidance Scale (Kontext)")
|
151 |
+
run_btn = gr.Button("🚀 생성하기", variant="primary")
|
152 |
+
with gr.Column():
|
153 |
+
gallery = gr.Gallery(label="🎨 2D 결과", show_label=True, columns=2, height="auto")
|
154 |
+
model3d = gr.Model3D(label="🧱 3D 미리보기", clear_color=[1, 1, 1, 0])
|
155 |
+
download = gr.File(label="⬇️ GLB 다운로드")
|
156 |
+
|
157 |
+
run_btn.click(
|
158 |
+
fn=workflow,
|
159 |
+
inputs=[prompt, input_image, multiview, guidance],
|
160 |
+
outputs=[gallery, model3d, download],
|
161 |
+
api_name="generate",
|
162 |
+
scroll_to_output=True,
|
163 |
+
show_progress="full",
|
164 |
+
)
|
165 |
+
|
166 |
+
return demo
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == "__main__":
|
170 |
+
build_ui().queue(max_size=3, concurrency_count=1).launch()
|